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ABSTRACT—The determination of the visual features me-

diating letter identification has a long-standing history in

cognitive science. Researchers have proposed many sets of

letter features as important for letter identification, but no

such sets have yet been derived directly from empirical

data. In the study reported here, we applied the Bubbles

technique to reveal directly which areas at five different

spatial scales are efficient for the identification of lower-

case and uppercase Arial letters. We provide the first

empirical evidence that line terminations are the most

important features for letter identification. We propose

that these small features, represented at several spatial

scales, help readers to discriminate among visually similar

letters.

Considerable evidence indicates that words are recognized by

letters, rather than by the whole-word shape (Legge, Mansfield,

& Chung, 2001; Paap, Newsome, & Noel, 1984; Peroa & Rosa,

1995; but see Allen & Emerson, 1991; Hadley & Healy, 1991).

Most convincingly, Pelli, Farell, and Moore (2003) showed that a

word is unreadable unless its letters are separately identifiable.

Using a procedure with a noise mask, they demonstrated that the

stimulus energy required for the recognition of a word increases

linearly with the number of letters. Thus, whether a word can be

identified is a straightforward function of the probability of

identifying each of its individual letters. This is true even for the

five most common three-letter words. Because these words have

very familiar whole-word shapes, the authors concluded that

global shape has little or no impact on the probability of rec-

ognizing a word correctly. Accordingly, a detailed knowledge of

the mechanisms involved in visual letter identification is fun-

damental to understanding reading.

Echoing this discussion about word recognition, a basic

question about letter recognition is whether letters are perceived

as global patterns or by features. A 45-year-old person who has

read only 1 hr a day will have identified more than 1 billion

letters (Pelli, Burns, Farell, & Moore-Page, 2006). Given this

level of exposure, we would expect that literate human adults

have a high level of efficiency in letter recognition. To reach high

levels of efficiency, perceptual strategy matters. In fact, using an

ideal-observer analysis, it is possible to demonstrate that the

best solution—memory issues notwithstanding—to any object-

identification task is template matching, rather than detection of

individual features (Tjan, Braje, Legge, & Kersten, 1995). Does

literate adults’ extensive practice with letters lead them to use

such an ‘‘optimal’’ strategy? Pelli et al. (2006) studied letter

identification by measuring the contrast necessary for identify-

ing a letter embedded in visual noise. To isolate the visual

constraints on letter identification, they compared human per-

formance across different fonts (e.g., Helvetica, Sloan, Kunstler)

and alphabets (e.g., Arabic, Chinese). They found that human

efficiency was mainly explained by Attneave and Arnoult’s

(1956) formula for perimetric complexity (i.e., sum of the inside

and outside perimeters squared, divided by the ‘‘ink’’ area), with

high complexity leading to low efficiency. This finding suggests

that even though template matching may be the optimal solution

in principle, normal human readers appear constrained to

proceed by features, even for identifying simple and highly

trained stimuli such as letters. The next question then becomes,

what are the features upon which human letter recognition

is based?

In the past three decades, insights about the features under-

lying letter recognition have come from experiments examining

how recognition errors for each individual letter of the alphabet

are distributed across the range of possible responses (i.e., the

remainder of the alphabet; but see Petit & Grainger, 2002, for a

Address correspondence to Martin Arguin or to Frédéric Gosselin,
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different approach). Such confusability matrices, however, can

be obtained only under very unusual conditions that elicit

sufficiently high error rates (typically around 50%). For this

reason, some researchers studied children who had not yet

integrated the visual appearance of letters (E.J. Gibson, Gibson,

Pick, & Osser, 1962). Others instead studied skilled readers, but

with target letters exposed very briefly (Townsend, 1971) or

with extremely low contrast (Geyer, 1977). Researchers have

proposed sets of individual features to predict these letter-

confusability matrices (Briggs & Hocevar, 1975; Geyer &

DeWald, 1973; E.J. Gibson, 1969; E.J. Gibson et al., 1962;

Laughery, 1969). In striking discrepancy with the findings of

Pelli et al. (2006), however, template-matching models predict

the outcome of letter-confusability experiments better than

feature-based models do (Gervais, Harvey, & Roberts, 1984;

Holbrook, 1975). An assumption that might resolve this lack of

convergence is that the feature sets proposed by theories do not

properly match those actually used by the human visual system.

Indeed, such a mismatch would cause feature models to

underperform in predicting human performance. This view

highlights a fundamental weakness in using confusability matri-

ces to indirectly reveal letter features: There is a vast gap between

theories as to what constitutes a feature and the data used to

test these theories. We propose an alternative approach for

determining more directly which components of letters drive

accurate recognition of them.

Recently, new tools referred to as classification image

techniques have been developed to reveal aspects of a distal

visual stimulus responsible for the measurable performance of

observers in a specific task (e.g., Eckstein & Ahumada, 2002;

Gosselin & Schyns, 2004). The underlying logic of these

techniques is relatively simple. If specific visual information is

necessary for the task at hand, depriving the observer of this

information (using additive noise or a mask) will strongly impair

his or her performance. In contrast, depriving the observer of

nondiagnostic information will not substantially alter perfor-

mance. For example, it seems obvious that for a reader to cor-

rectly discriminate between an F and an E, the bottom parts of

the letters are necessary. Hiding these parts with a mask should

have a great impact on discrimination between these letters.

Classification image techniques, therefore, allow a direct

empirical examination of the diagnostic features used by human

observers in letter identification.

In the study we report here, skilled adult readers attempted to

identify letters randomly sampled at different spatial scales (see

Fig. 1). We performed multiple linear regression on the location

of the samples and accuracy scores to establish which regions of

the stimuli mediated letter recognition, and at which spatial

scales. This method, called Bubbles (Gosselin & Schyns, 2001;

e.g., Adolphs et al., 2005; B. Gibson, Lazareva, Gosselin,

Schyns, & Wasserman, 2007; Nielsen, Logothetis, & Rainer,

2006; Smith, Gosselin, & Schyns, 2006), belongs to the general

classification image approach. The results obtained using this

direct and unbiased method were compared with the various

features that have been proposed to explain letter recognition.

METHOD

Participants

Six graduate students from the Université de Montréal took part in

this experiment. All had normal or corrected-to-normal visual acuity.

Stimuli

The stimuli were the 26 letters of the Roman alphabet displayed in

lowercase (152-point Arial font) and uppercase (117-point Arial

font), and printed in dark gray (luminance of 2.1 cd/m2) against a

light-gray background (luminance of 57.3 cd/m2). On average,

both lowercase and uppercase letters subtended 1.351 of visual

angle horizontally (64 pixels wide by 84 pixels high for uppercase

letters, 64 pixels wide by 99 pixels high for lowercase letters).

To reveal the visual features diagnostic for letter identification,

we used Bubbles (Gosselin & Schyns, 2001). In a Bubbles

experiment, stimulus information is randomly sampled, and

multiple linear regression performed on the samples’ locations and

corresponding accuracy scores reveals which parts of the stimuli,

on the dimensions that were sampled, are correlated with perfor-

mance. We sampled letter stimuli in image space (x- and y-

coordinates) and at varying spatial scales to uncover which letter

parts are most correlated with letter identification.

The steps involved in creating an experimental stimulus were

as follows: A letter stimulus was decomposed in five spatial-

frequency bands (128–64, 64–32, 32–16, 16–8, and 8–4 cycles/

image, or 32–16, 16–8, 8–4, 4–2, and 2–1 cycles/letter; the

remaining bandwidth served as constant background; see Fig. 1,

first row), using the Laplacian pyramid (Burt & Adelson, 1983).

The letter information at the five scales was then sampled using

an opaque mask punctured by randomly located Gaussian holes

(henceforth called ‘‘bubbles’’) to avoid introducing spatial-fre-

quency artifacts. The size of the bubbles was adjusted according

to frequency band so that each bubble revealed 1.5 cycles

of spatial information (Fig. 1, second row). Because the size of

the bubbles increased as the spatial scale became coarser, the

number of bubbles differed across scales to keep the size of the

sampled area constant across frequency bands. Finally, the

information revealed by the bubbles was fused across the five

frequency bands to produce an experimental stimulus (Fig. 1,

third row). For each letter stimulus, the total number of bubbles

was adjusted on a trial-by-trial basis to maintain a correct

identification rate of 52% (approximately halfway between

chance level—3.85%—and perfect identification, which is

optimal for the multiple linear regression).

Procedure

Each participant completed 100 blocks of 260 trials for each

letter case, for a total of 52,000 trials per participant. Such a
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large number of trials was necessary to enable reliable statistical

inference about the correlations between letter parts and

accuracy. The uppercase and lowercase letters were presented

in separate blocks, and each participant completed all the

blocks in a particular case before moving to the other case. Half

the participants began with the lowercase letters.

Each trial began with a fixation cross displayed at the center of

the screen for 494 ms. The cross was then immediately replaced

by a ‘‘bubblized’’ letter (see the stimulus at the bottom right of

Fig 1 for an example), which remained on the screen for 200 ms.

The participant had to identify the letter and then press the

appropriate key (e.g., the ‘‘a’’ key when the letter was a orA) on a

keyboard. No feedback was provided. The next trial started as

soon as the software computed the next stimulus (approximately

500 ms after the participant’s response).

The stimuli were displayed on a 21-in. monitor set with a

refresh rate of 75 Hz and calibrated to allow a linear manipu-

lation of luminance. The experiment was run on a PC-Pentium

IV computer. The experimental program was written in Matlab,

using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).

The viewing distance was maintained constant at 107 cm using a

chin rest.

RESULTS AND DISCUSSION

To achieve 52% correct performance, participants needed, on

average, 54.2 bubbles for lowercase letters and 30.9 bubbles

for uppercase letters (see Table 1 for the number of bubbles re-

quired for each letter, on average). To pinpoint the features that

different observers used to discriminate letters, we performed a

least squares multiple linear regression on the bubble masks and

accuracy data. The plane of regression coefficients yielded by this

operation is called a classification image. To obtain a classifica-

tion image, we computed the correct plane by summing all the

bubble masks (see Fig. 1, second row) that led to a correct answer

and computed the incorrect plane by summing all the bubble

masks that led to an incorrect answer; we then subtracted the

incorrect plane from the correct plane. One such classification

image was computed per letter, per case and per frequency band.

To estimate the mean and the standard deviation of the

distribution of the null hypothesis (i.e., no correlation between

accuracies and sampled stimulus information), we repeated

this procedure on permutated accuracies. This mean and

this standard deviation were used to calculate the Z scores of

the classification images. To determine the letter information

significantly correlated with accuracy, we applied the pixel test to

the Z-scored classification images (p < .01). The statistical

threshold provided by this test corrects for multiple comparisons

while taking the spatial correlation inherent to structured images

into account (Chauvin, Worsley, Schyns, Arguin, & Gosselin,

2005). In Figure 2, this effective information—that is, the

statistically thresholded classification image—is shown in red

for each lowercase and uppercase letter; the classification images

are superimposed on the corresponding letters, in gray, to help

with interpretation.

A first glance at the left-most columns of Figure 2 may give the

impression that the letters are almost completely revealed.

However, this is far from the case. Only 32% and 24% of the

ink area of the uppercase and lowercase letters, respectively, is

depicted. The impression of completeness is due to the fact that

what is revealed are the most informative regions of the letters.

We believe that this is a rather impressive demonstration that the

Original 32-16

*

=

+ + + + =

= = = =

* * * *

16-8 8-4 4-2 2-1 Cycles/Letter

Fig. 1. Illustration of the stimulus-generation process. Each original letter (upper left) was first decomposed into five spatial-frequency bandwidths
of one octave each (top row). Each bandwidth was then independently sampled with randomly positioned Gaussian windows (i.e., bubbles), so that
sparse information was revealed (middle row). The information samples were summed across the five scales to produce an experimental stimulus
(bottom row).
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experiment indeed succeeded in revealing the letter regions that

effectively drive recognition performance (see also Fig. 3).

A comparison of the number of pixels that were significantly

useful for letter identification at each frequency band revealed a

clear advantage for the information between 2 and 4 cycles per

letter (see Fig. 4). This analysis was performed by calculating

the proportion of significant pixels that fell on each frequency

band. Note that only the pixels falling directly on letter ink were

included in this analysis and all those that follow.

The classification images allowed us to reevaluate the various

proposals regarding potent letter features. The letters were de-

composed into the full complement of local features that have

been proposed in the literature, except for global features such

as symmetry, cyclic change, and parallelism, which we did not

consider. We also included terminations, a feature that had not

been considered previously. For each letter of the alphabet and

each case, we created 213 masks containing the following 10

feature classes: vertical, horizontal, slant tilted left, slant tilted

right, curves opened up, curves opened down, curves opened

left, curves opened right, terminations, and intersections. For

example, the uppercase letterAwas decomposed in eight masks,

that is, one slant tilted left, one slant tilted right, one horizontal,

two terminations, and three intersections. The terminations and

intersections were defined as letter ink within a radius of 13

pixels from the center of the feature, according to our own

identification. To make sure that the masks for terminations and

intersections were independent of those for the other features,

we subtracted the area corresponding to the terminations and

intersections from the other feature masks. For example, in

the uppercase letter A, the two slants and the horizontal did

not contain the pixels of the three intersections and the two

terminations.

Fig. 2. Classification images for the human observers in the experiment.
Results for lowercase Arial letters are on the left, and results for uppercase
Arial letters are on the right. For each letter, the overall classification
image is shown on the left, and the next five columns display in red the
significant pixels for each spatial-frequency bandwidth (from fine to
coarse).

TABLE 1

Average Number of Bubbles Participants Required to Maintain

Performance at 52% Correct at the End of the Experiment

Letter Uppercase Lowercase

A 16 45

B 38 44

C 42 84

D 33 35

E 37 54

F 41 55

G 31 37

H 33 55

I 21 133

J 32 45

K 24 29

L 33 128

M 22 18

N 30 69

O 50 100

P 45 44

Q 37 45

R 29 47

S 32 57

T 32 61

U 34 64

V 23 45

W 12 20

X 16 25

Y 27 31

Z 23 37
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To examine directly the correspondence between the features

and the classification images, we disposed of the spatial-

frequency dimension by collapsing it prior to smoothing, thereby

retaining only the x and y dimensions. From these bidimensional

classification images, we kept only the portions of the stimuli

corresponding to the highest 5% of the regression coefficients.

For each image, we then calculated the proportion of the total

number of these pixels that fell on each feature and divided this

proportion by the total number of pixels in that feature, thus

normalizing the proportion for feature size (not adjusting for

feature size only amplified the effects reported). After

conducting this analysis for each letter separately, we combined

the results by summing the proportions calculated for each

feature class across the 26 letters of each case, and subsequently

dividing this sum by the number of occurrences of that feature

class within the alphabet. To reveal the relative importance of the

features for the correct identification of letters, we normalized the

grand sum across feature classes to 1. Figure 5 summarizes the

results thus obtained. Terminations were, by far, the most impor-

tant features for both letter cases, with scores of .30 and .35 for

upper- and lowercase letters, respectively. In fact, terminations

were, respectively, 1.5 and 1.8 times more important than

horizontals, which constituted the next most important feature

class for both upper- and lowercase letters.

To compare human observers’ use of features for letter iden-

tification with optimal use of diagnostic information, we built an

ideal-observer model, which used all the visual information

available for uppercase and lowercase letter identification. The

ideal observer was submitted to the same experiment as the

human participants and performed the same number of trials per

letter as human participants. The number of bubbles for each

letter was set to the average number of bubbles used by the

human participants for that letter. An adjustable quantity of

white Gaussian noise was added to the letters prior to sampling

them with Gaussian apertures, in order to equate human and

model performance (i.e., 52% accuracy for each letter). On each

trial, the model determined the Pearson correlation between the

sparse input (i.e., the noisy letter revealed by bubbles) and each

of the 26 letters of the relevant case as revealed by the same

bubble mask. The categorization response was the letter with the

highest correlation with the stimulus.

The same feature analysis conducted with the human data was

performed on the data for the ideal observer, and the results are

presented in Figure 5. Note that the profile of usefulness of the

different feature classes is flatter for the ideal observer than for

humans. For the ideal observer, the difference between the first

and second most important features is 2% for both lowercase and

uppercase letters, whereas for humans, the difference is 16% for

Fig. 3. Oscar Wilde’s (1899) famous quote, ‘‘The truth is rarely pure and never simple’’ (p. 17) displayed with letter ‘‘ink’’ correlated (top; see Fig. 2)
and uncorrelated (bottom) with accuracy. The same quantity of letter ink was used in both cases.
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lowercase letters and 10% for uppercase letters. Most important,

the usefulness of the terminations was much lower for the ideal

observer (ranked 5th and 6th out of 10 for lowercase and up-

percase letters, respectively) than for human observers. This

indicates that the importance of the terminations for human

participants is largely attributable to constraints imposed by

properties of the human visual system, rather than to constraints

that are exclusively determined by the stimulus set.

GENERAL DISCUSSION

We used Bubbles, a classification image technique, to reveal

the letter areas responsible for accurate letter identification.

Although this method has been applied successfully to face

recognition, it had never been applied to letter identification.

Figure 4 clearly shows that the frequency bandwidth from 2 to 4

cycles per letter conveys the most potent visual information for

letter identification. This finding is congruent with results

obtained by other researchers (Chung, Legge, & Tjan, 2002;

Ginsburg, 1980; Legge, Pelli, Rubin, & Schleske, 1985; Majaj,

Pelli, Kurshan, & Palomares, 2002; Parish & Sperling, 1991;

Solomon & Pelli, 1994), who found that letters subtending 1.351

of visual angle, as in the present study, are optimally masked by

noise containing spatial frequencies around 3.1 cycles per

letter. However, the 260 classification images of Figure 2 tell a

more subtle and complete story. For example, the uppercase

letters C and G share three curves, with convexities directed

upward, to the left, and downward. The classification images

show that one of these features (the curve opening on the right) is

efficiently processed in low-spatial-frequency bandwidths. But

identification of these letters also requires small features (the

intersection and horizontal bar for G and the lower-part

termination for C) represented by several spatial-frequency

bandwidths. All spatial frequencies, including relatively high

spatial frequencies, are necessary to resolve the edges of these

small features. In fact, in determining the relative importance of

letter features, we found that terminations, although relatively

small, were the most distinctive features (Fig. 5). For example,

the inferior termination of the uppercase letter C clearly allows

the discrimination of this letter from the uppercase letters G, Q,

and O, and is in fact sufficient for the correct identification of C.

In our feature analysis of the classification images of the ideal

observer (see Fig. 5), terminations ranked 5th (lowercase letters)

and 6th (uppercase letters) out of the 10 potential features
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considered. These rankings are markedly different from those of

the human observers. The stimulus areas effective for the ideal

observer are those that are most diagnostic for the unique

identification of the target letter—that is, for its discrimination

against the remainder of the alphabet—in the absence of any

other constraints. The divergence in the effective features for the

ideal observer and humans is thus (at least partially; we discuss

another potential determinant later) attributable to the fact that,

in addition to needing to use features that can indeed discrim-

inate among letters, humans are constrained by the constitution

and organization of their visual system. This observation

suggests, for instance, that the great importance of terminations

for human participants results from an interaction between the

relative diagnosticity of this feature and a disproportionately

strong disposition of the human visual system to encode it

(relative to other features). Some neurons in the primary visual

cortex of monkeys respond to terminations. These are a subset of

the cells with strongly end-stopped receptive fields (hyper-

complex cells; Hubel & Wiesel, 1968). Moreover, it is believed

that a number of these special cells converge to single neurons in

V2 (von der Heydt & Peterhans, 1989). This might provide an

early mechanism for letter identification. In contrast, humans’

poor use of features such as verticals and curves opening up,

which are highly effective for the ideal observer (see Fig. 5),

suggests that the human visual system may be poorly equipped

to process such features.

The feature analysis reported in this article is the first, to the

best of our knowledge, to demonstrate the crucial importance of

terminations for letter identification in humans. E.J. Gibson

(1969) suggested that discontinuities were important for letter

recognition, and terminations can be construed as discontinuities,

but her proposal remained rather vague and was not substantiated

empirically.

Why are small features such as terminations so important for

letter identification in humans? Terminations are clear disconti-

nuities in bars and curves and thus provide reliable information

about the absence of intersections—also called coterminations in

the object-recognition literature—in the target letter. An informal

examination of other fonts suggests that the presence and the rel-

ative locations of terminations and intersections might be font-in-

variant properties of letters. In fact, it is relatively obvious that one

can create an A without any slant. However, the two central

intersections and the two terminations are critical properties of the

letter A. This analysis suggests that a novel font would remain

identifiable as long as a subset of these small features is available

for visual extraction. It also points to another possible determinant

of the divergence between humans’ and the ideal observer’s

feature use, namely, the invariant diagnosticity of terminations

across fonts, to which our ideal observer was obviously insensitive.

Previous attempts to improve reading speed in individuals with low

vision by filtering word images with a bandpass in the mid to high

spatial-frequency range led to equivocal results (e.g., Fine &

Peli, 1995). These failures may be attributable to the fact that the

diagnosticity (with respect to letter identity) of the visual features of

letters in that spatial-frequency range was not improved by this

manipulation. The results presented in this article should allow the

creation of a font in which the diagnosticity of the features most

effective for letter identification is enhanced. It remains to be seen

whether such a font would lead to faster letter recognition and, in

turn, to faster word recognition in normal readers and individuals

with letter-by-letter dyslexia.
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