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Abstract 

We first describe SLIP (Strategy Length & Internal Practicability), a formal model for thinking 

about categorization, in particular about the time course of categorization. We then discuss an 

early application of this model to basic-levelness. We then turn to aspects of the time course of 

categorization that have been neglected in the categorization literature: our limited processing 

capacities; the necessity of having a flexible categorization apparatus; and the paradox that this 

inexorably brings about. We propose a two-fold resolution of this paradox, attempting, in the 

process, to bridge work done on categorization in vision, neuropsychology and physiology. 

 

Keywords: categorization; attention; vision; temporal processing; object recognition; scene 

recognition; face recognition. 
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1. A model of categorization 

Figure 1 shows four artificial scenes synthesized by combining two different luminance 

patterns (that we call flat and hilly) with two different chromatic patterns (labeled grassy and 

sandy). This toy-example captures some of the essential characteristics of real-world 

categorization. These stimuli can be categorized as either “field” (the combination of is_flat and 

is_grassy), “desert” (is_flat and is_sandy), “mountain” (is_hilly and is_grassy), or “dune” 

(is_hilly and is_sandy) at the most specific level of categorization. At a more abstract level of 

categorization these stimuli can be categorized as “flat” and “hilly” (Figure 1). Thus, the 

“mountain” and the “dune” scenes are “hilly”, and the “field” and “desert” scenes are “flat”. We 

thus have a small category hierarchy. And we are ready to begin the unpacking of our ideas about 

the time course of categorization. 

----------------------------------------------------------------------------------- 

Insert Figure 1 about here 

----------------------------------------------------------------------------------- 

SLIP (Strategy Length & Internal Practicability) is a categorizer that applies “optimal” testing 

strategies to determine the category membership of objects. The goal here is not so much to 

mimic human performance precisely but to provide a non-arbitrary starting point for future 

modeling efforts as well as a framework to better understand human performance (e.g., 

Anderson, 1990, 1991; Kersten, 1990; Feldman, 2000; Gershman, Horvitz, & Tenenbaum, 2015). 

A strategy comprises sets of noisy detectors. For example, the dune scene illustrated in Figure 1 

satisfies two category strategies: Strat(“dune”) = [{is_hilly} & {is_sandy}], is the SLIP strategy 

for the “dune” category and comprises two sets of detectors; Strat(“hilly”) = [{is_hilly}] is the 

SLIP strategy for the “hilly” category and comprises a single set of detectors. We think of these 

sets of detectors as populations of specialized neurons (e.g., in V4 for color, in V5 for motion). 
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SLIP launches a subset of all these detectors in parallel. The size of this subset is related to the 

amount of information that humans can process simultaneously. We discuss this point in some 

details in a subsequent section. 

Because the detectors in a set are redundant, only one of them needs to be successful to verify 

the entire set. For example, only one successful luminance detector is sufficient to verify that a 

scene is “flat” in this category hierarchy. Everything else being equal, SLIP predicts that 

strategies associated with more redundant sets of detectors will have a higher probability of being 

completed after few discrete processing cycles (t). There are two ways of increasing the 

redundancy of a strategy: either more detectors of feature X become available, or more exemplars 

of feature X become available. 

Often more than one set of redundant detectors is required to categorize a scene. For example, 

to verify that a scene is a “dune” in the category hierarchy, one successful luminance detector and 

one successful chrominance detector are required. Everything else being equal, SLIP predicts that 

shorter strategies will have a higher probability of being completed after few processing cycles. 

We now turn to the formalization of these ideas. The cumulative probability that a strategy 

comprising n sets of redundant detectors is completed at processing cycle t or before is given by: 

µ = 1−φ j
t( )

j=1

n

∏  (Equation 1), 

with φ j = 1− γ j . The constant γ j  is the probability that the set of detectors j is successful after 

one processing cycle; it constitutes the “weight” given to dimension j (for details see Gosselin & 

Schyns, 2001a). 

Although the probability distribution of Equation 1 is useful in its own right, we have 

more often employed its associated density function. This is the function that determines the 

probability that a SLIP strategy is completed after exactly t processing cycles. To compute it, we 
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must subtract two cumulative probabilities: the probability that the a strategy is completed in at 

most t processing cycles minus the probability that it is completed in at most t-1 processing 

cycles: 

χ = µ t( ) − µ t −1( )  (Equation 2). 

To illustrate Equation 2, we have applied it to Strat(“hilly”) and to Strat(“dune”). The predicted 

density functions are given in Figure 1. Here, we have assumed that both φ ’s (i.e., the probability 

that the set of detectors j is unsuccessful during one processing cycle) were equal to .5. Two 

properties of these density functions are noteworthy: (1) They are very different from one 

another. In particular, they differ on the average number of cycles necessary before verification. 

The means of such density functions is equal to tχ
t=1

+∞

∑ t( ) , i.e. 2 cycles for Strat(“hilly”) and 2.67 

cycles for Strat(“dune”); (2) Another noteworthy aspect of these density functions is their shapes 

which are reminiscent of response time (RT) density functions (e.g., Luce, 1986). If we assume 

that RT is a linear function of the number of processing cycles (i.e., RT = a * t + b, with a and b, 

two free parameters), Equation 2 can be construed as an RT density function. Applying this 

assumption to the above example, this implies that categorizers will take longer to verify that a 

scene is a “dune” than to verify that it is “hilly”. This connection between average RT and 

average number of processing cycles gives us a first quantitative handle on the experimental 

literature in cognitive psychology. We will see in the next section how SLIP can explain a 

significant portion of the so-called basic-level literature. 

 

2. The basic-level literature 

In Rosch, Mervis, Gray, Johnson and Boyes-Braem (1976, Experiment 7), participants 

were taught the names of 18 objects at three levels of categorization – the subordinate (e.g., 
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“Levis”, “Macintosh”), basic (e.g., “pants”, “apple”) and superordinate (e.g., “clothes”, “fruit”). 

These objects belonged to one of six possible non-animal taxonomies: “musical instruments”, 

“fruits”, “tools”, “clothes”, “vehicles”, and “furnitures”. In a verification task, subjects were 

shown a category name followed by a stimulus picture, and had to determine whether they 

matched. On average, categories at the basic-level were fastest to verify, and categories at the 

subordinate level slowest (see also Hoffmann & Ziessler, 1983; Jolicoeur, Gluck & Kosslyn, 

1984; Murphy, 1991; Murphy & Smith, 1982; Murphy & Brownell, 1985). This is the first of 

many verification experiments that demonstrated a superiority at basic level of abstraction. 

But this basic-level superiority doesn’t always hold. An exception identified early on in 

the literature is that of atypical exemplars of a basic-level category that are categorized faster at 

the subordinate than at the basic level (e.g., a penguin is categorized as a "penguin" faster than as 

a "bird"; Murphy & Brownell, 1985). Another exception is that of dog and bird enthusiasts that 

are faster at verifying the objects of their enthusiasm at the subordinate than at the basic category 

(e.g., a Doberman is categorized faster as a "Doberman" than as a "dog" by a dog enthusiast; 

Tanaka & Taylor, 1991). More recently, Macé et al. (2009) have observed faster "ultra-rapid 

categorization" at the superordinate level than at the basic-level (more on the subject in section 

4.1 Compulsory feedforward processing sweeps), and suggested that, “You spot the animal faster 

than the bird.” Mack and Palmeri (2015) examined some of the requirements for this ultra-rapid 

categorization superordinate level superiority. They showed that with randomized target 

categories, the superordinate advantage was eliminated; and with only four repetitions of 

superordinate categorization within an otherwise randomized context, the basic-level advantage 

was eliminated. 

The SLIP model is perfectly adapted to predicting basic-levelness, i.e., the average speed 

of categorization at various levels of abstraction in a verification task, including the cases that 
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favor levels of abstraction other than basic. Gosselin and Schyns (2001a) compared the predictive 

power of SLIP with that of four other basic-levelness measures: context model (Medin & 

Schaffer, 1978; modified by Estes, 1994), category feature-possession (Jones, 1983), category 

utility (Corter & Gluck, 1992), and compression measure (Pothos & Chater, 2002). To do so, 

they drew data from the empirical work of Rosch et al. (1976), Murphy and Smith (1982), Mervis 

and Crisafi (1982), Hoffmann and Ziessler (1983), Corter, Gluck and Bower (1988), Murphy 

(1991), Lassaline (1990), Tanaka and Taylor (1991), Johnson and Mervis (1997), Gosselin and 

Schyns (1998), and from three novel experiments using computer-synthesized 3-D artificial 

objects. SLIP led the pack by a large margin, predicting 88% of this data set, while the category 

utility model, the category feature-possession model the compression measure, and the context 

model predicted, respectively, 64%, 62%, 42% and 35% of this data set. 

 

3. The need for flexibility and a paradox 

So far our story has been, to a large extent at least, a success story. We now turn to 

limitations of the SLIP model and of other similar models, and to ways to overcome these 

limitations. We hope that this will point toward new directions for research on the time course of 

categorization. 

 

3.1 Limited processing capacity 

There is a long and venerated tradition of research on the topic of information processing 

capacities in the field of human cognition (e.g., Broadbent, 1958; see Cowan, 2000, for a critical 

review); it will be enough for our purpose to cite a few representative examples. Most of the 

experiments in this field demonstrate one way or another that human information processing 

capacities are far less impressive than what humans would naïvely expect. In a seminal article, 



 8 

Miller (1956) showed that our short term memory has a capacity of seven, give or take two 

“chunks” of information. Similarly, “object tracking” experiments performed by Pylyshyn and 

colleagues have shown that we can only track four or five moving targets simultaneously (e.g., 

Sears & Pylyshyn, 2000). The most striking demonstrations ever, perhaps come from so-called 

“change blindness” experiments. Observers are asked to detect important changes in a natural or 

an artificial scene and are shown to be ridiculously poor at it (e.g., Most, Scholl, Clifford & 

Simons, 2005; Rensink, O’Regan & Clark, 1997; Simons & Levin, 1997; Simons, 2000b, see the 

special issue of Visual Cognition). In the related paradigm of “inattentional blindness” (Mack & 

Rock, 1998; Simons, 2000b), observers are asked to perform a task that, unbeknownst to them, is 

a distraction task (e.g., to count the number of times the members of a team in white T-shirts pass 

a basketball). In a small portion of the trials, something different happens (e.g., a human dressed 

in a gorilla suit walks to the center of the scene, turns toward the spectators, beats its chest with 

its hands a few times, and walks away). Typically less than one fourth of the participants notice 

these odd events (Mack & Rock, 1998; Simons, 2000a). 

As we have written in the first section of this chapter, the SLIP model can implement this 

psychological reality by having only a subset of all available detectors activated simultaneously. 

Thus the blindness to a large change occuring in a natural scene – say an engine disappearing 

from the wing of an airplane – could result from not enough of the relevant SLIP detectors being 

active simultaneously for the verification to be completed on time. Increasing the number of 

active detectors would result in the change being detected. 

 

3.2 The need for flexibility 

The limited processing capacity of the cognitive system implies that a selection of 

information must occur. There is now a wealth of evidence that this does in fact happen. We will 
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review some of the most compelling empirical evidence for this in section 4.2 Flexible iterative 

processing sweeps. As a preview, here we will consider an experiment performed with the four 

artificial scenes of Figure 1. In a learning phase, all participants learned to categorize the four 

scenes at a general and at a specific level. Participants were split in two groups (called LUMI and 

CHRO) that differed on the categories at the general level. The LUMI participants learned to 

separate the four scenes into “flat” and “hilly” on the basis of luminance cues; and the CHRO 

participants learned to separate the same scenes into “grassy” and “sandy” on the basis of 

chromatic cues. At a specific level of categorization, both LUMI and CHRO participants learned 

to categorize the stimuli as either “field” (the combination of is_flat and is_grassy), “desert” 

(is_flat and is_sandy), “mountain” (is_hilly and is_grassy) or “dune” (is_hilly and is_sandy). In a 

testing phase, participants were instructed to categorize the scenes at their most specific level 

(never at their general level). Note that the specific categorizations are strictly identical in the 

groups, which only differ on the dimension structuring their high-level categorizations. The 

conjunctive nature of the stimuli can be used to determine indirect effects of diagnosticity. In the 

context of the SLIP categorizer, Gosselin (2000) predicted that CHRO observers would weight 

the chrominance dimension more heavily than the luminance dimension, whereas LUMI 

observers weighted the luminance dimension more heavily than the chrominance dimension1. 

The insight is that each group is tuned to chromatic and luminance information to maximize their 

categorization potential. After a successful test only on the luminance dimension, the LUMI 

group can already categorize the scene at a general level — put the dune scene in the “hilly” 

																																																								
1 Gosselin (2000) adapted SLIP to predicting the error patterns of subjects in this situation. In a nutshell, 
he used Equation 1 and corrected it for guessing. The average bestfits for the various types of response are 
reproduced in Figure 1b. Importantly, observer groups assigned orthogonal weights to the luminance and 
chrominance dimensions (with the CHRO vs. LUMI group biased to the chromatic vs. luminance 
dimension, with greater weights of about .6) even though categorizations at the specific level (the task to 
resolve) was itself unbiased to one or the other dimension. 
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category, for example — whereas the CHRO group cannot. In contrast, after a successful test 

only on the chrominance dimension, the CHRO group can categorize the scene at a general level 

— put the dune scene in the “sandy” category — whereas the LUMI group cannot. 

Here, this does not help the participants but, in real life, putting an object in a category, 

even when it’s not the target category, allows them to quickly infer unseen features (e.g., Rosch, 

1978; Anderson, 1990). Consider the example of Pi Patel, the main character in Life of Pi, on his 

raft with an unknown thing. At least two categorization routes of similar processing time can lead 

him to the same conclusion: “Richard Parker” is standing just in front of me. The first route 

would initially verify that the thing possessed distinctive tiger marks (property a), then the 

specific eye color of Richard Parker (property b). The second route would perform the same 

property tests, but in the opposite order (eye color before distinctive tiger marks). Both routes 

lead to the same final outcome in the same lapse of time: “This is Richard Parker”. However, the 

initial testing of the tiger marks in the first route could lead to an intermediate “tiger” 

categorization before the specific “Richard Parker” categorization, allowing Pi Patel to react 

faster. 

Very little is known about how categorizations are embedded in real life. Gosselin’s 

experiment suggests however that beyond the probabilistic preference for categories with high 

basic-levelness induced by their feature structure, we are biased for a sequence of categories. 

There is actually some indication of this in the face recognition literature: Liu, Harris and 

Kanwisher (2002), after having conducted a MEG study, proposed that face perception should be 

divided into stages: a first stage where the stimulus is categorized like a face (occurring in the 

first 100ms) and a second stage, completed after about 170 ms, where the face is identified at an 

individual level. Sugase, Yamane, Ueno and Kawano (1999) have obtained similar results 

performing unicellular recordings in macaques. These authors showed that information contained 
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in a face is used in a first rapid stage where global information allow the discrimination between 

macaque and human face and a second slower stage where finer information is used in order to 

identify face or categorize facial expression. The same seems to apply to object recognition. In a 

behavioral recognition task with high temporal resolution, De la Rosa, Choudhery and 

Chatziastros (2011) observed that object detection occurred earlier than categorization and 

identification.  

 

3.3 Back to the paradox 

We have seen how the limited processing capacities of humans necessitate flexibility, and 

that this flexibility has, to some degree, now been incorporated into categorization models. 

However, the above SLIP story and others like it, for all their appeal, inexorably lead to a 

paradox: How can a categorizer know which detectors to turn on before knowing what is out 

there? And, reciprocally, how can a categorizer know what is out there before turning the relevant 

detectors on? We will devote the next few pages on ways to resolve this paradoxical situation. 

 

4. Categorization as an iterative process 

Our resolution of the above paradox will be two-fold: We will argue that a subset of 

detectors of a SLIP categorizer – or any other categorizer – is always activated and that the 

remainder is used in a flexible manner, informed by previously activated detectors. Many 

theoretical proposals in the visual recognition literature are in line with this answer. We will 

review these proposals, with categorization always on our minds. We will also describe a portion 

of the empirical work that supports these theories. 

 

4.1 Compulsory feedforward processing sweeps 
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Ullman (1984) was among the first to propose that object recognition is informed by 

feedforward compulsory processing sweeps. Some detectors – using the terminology of the SLIP 

framework – would always be activated and would thus allow for surprise, for unexpected things 

to be discovered. Of course, these detectors cannot fully categorize the visual scene; otherwise, 

we would be back to square one paradoxically speaking. This compulsory feedforward 

processing sweep, however, can attract our attention – guide the activation of our flexible 

detectors – toward suspicious-looking, partially processed objects. 

Several studies performed by Thorpe and his research group as well as by others 

demonstrate the capacity of human subjects to categorize a visual scene very rapidly. Assuming 

that flexibility and feedback require time, this rapid processing supports the claim that a 

compulsory feedforward sweep can perform relatively complex processings (e.g., Delorme, 

Richard & Fabre-Thorpe, 2000; Fabre-Thorpe, Delorme, Marlot & Thorpe, 2001; Thorpe, Fize & 

Marlot, 1996; VanRullen & Thorpe, 2001a). It has been demonstrated, for instance, that human 

participants can categorize a natural scene flashed for 20 ms with high accuracy (94%; Thorpe et 

al., 1996). In such ultra-rapid categorizations, a differential electrophysiological component 

distinguishes target from non-target scenes around 150 ms following stimulus onset (Thorpe et 

al., 1996); this brain activity is also correlated with the subject’s decision about the status of the 

stimulus (i.e. target vs non-target; VanRullen & Thorpe, 2001b). It seems likely that the 

mechanisms involved in ultra-rapid categorization are purely feedforward and encapsulated 

(Fabre-Thorpe et al., 2001; VanRullen, Delorme & Thorpe, 2001; VanRullen & Koch, 2003): the 

performance of subjects in such tasks does not increase with training even for a period as 

extensive as 14 days (Fabre-Thorpe et al., 2001). Furthermore, a purely feedforward biologically-

inspired neural network was shown to be sufficient to duplicate ultra-rapid categorization 
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performance in humans (Delorme & Thorpe, 2001; VanRullen, Gautrais, Delorme & Thorpe, 

1998). 

Likewise, it was shown that ultra-rapid categorization of natural scenes (Li, VanRullen, 

Koch & Perona, 2002) and gender discrimination of faces (Reddy, Wilken & Koch, 2004) are 

possible in the near absence of attention. The performance of human subjects in both of these 

tasks was shown to be unimpaired by a dual-task requiring attention. Using a battery of 

experimental tools, LeDoux and colleagues (e.g., Armony & Ledoux, 2000) have shown that 

fearful faces are processed in a fast and feedforward manner by the amygdala and can 

subsequently drive behaviour. One question that remains largely unanswered by all these 

experiments concerns the nature of the information processed during these compulsory 

feedforward sweeps. 

 

4.1.1 The nature of the information processed during compulsory feedforward sweeps 

 Caplette et al. (submitted) investigated the nature of the information sampled across time 

when categorizing an object. They used the Bubbles technique to uncover which spatial 

frequencies shown at which moments correlate with accurate object recognition in neurotypical 

individuals and subjects with Autism Spectrum Disorder (ASD). We describe this experiment in 

some details in the next section, which can also be read as a Bubbles primer. 

 

 4.1.1.1 A Bubbles Primer. “Bubbles” is a generic procedure that can reveal the 

information that drives a measurable response (Gosselin and Schyns, 2001b). Six decisions, or 

answers to six questions, are required in order to set up a Bubbles experiment (Gosselin and 

Schyns, 2005): (1) what is the stimulus set? (2) in which space will the stimuli be generated? (3) 

what is the “bubble”? (4) what is the observer’s task? (5) what are the observer’s possible 
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responses? and (6) what are the observers? Next, we discuss each of these decisions in the 

context of Caplette et al. (submitted).  

1) Stimulus Set? In a Bubbles experiment, the stimulus set is crucial, because it critically bounds 

what will be tested. Caplette et al. used 86 object images. These images were gray-shaded and 

had a resolution of 256 x 256 pixels (subtending 6 x 6° of visual angle). The overall energy and 

the spatial frequency content of the images were normalized. The images were presented for a 

duration of 333 ms. Generally speaking, the larger the stimuli set, the better the Bubbles solution 

should be. A large stimulus set will tend to prevent observers from adopting strategies that are 

atypical of natural processing.  

2) Stimulus Generation Space? The choice of a proper stimulus generation space is one of the 

most important decisions when setting up a Bubbles experiment. For instance, stimuli used in a 

Bubbles experiment have been sampled in Cartesian space (e.g., Gosselin & Schyns, 2001b; 

Gibson et al., 2005; 2007; Rutishauser et al., 2013), in Fourier space (e.g., Willenbockel et al., 

2010; Caplette et al., 2014), in time (Blais, Arguin & Gosselin, 2013), and in Cartesian x time 

space (e.g., Vinette, Gosselin & Schyns, 2004; Blais et al., 2009). Caplette et al. searched the 

temporal and spatial frequency dimensions with a resolution of 120 Hz and 0.5 cycle per image 

(cpi). 

3) The Samples? At this stage, two important decisions have been made and the search can 

almost begin. In the search, information is sampled from the set up space, and the next decision 

to make concerns the unit of sampling. This unit depends on a number of factors, including the 

stimuli, the nature of the search space and the task to be performed. Here, spatial frequencies 

were randomly sampled through time. Sampling matrices were created by convolving sparse 



 15 

matrices of binary noise with a 2-D Gaussian kernel (i.e., a bubble). Accuracy was maintained at 

75% correct by adjusting the number of bubbles on a trial-by-trial basis using a gradient descent 

algorithm. 

4) The Task? At this stage, the sampling procedure has been fully specified. The next decision is 

that of the task. In Caplette et al., it was a verification task. After each dynamic bubblized 

stimulus, an object name was shown and subjects had to indicate as rapidly and as accurately as 

possible if the name matched the object (it did on 50% of the trials). Several tasks can and have 

been used with the same stimulus set. 

5) The Response? The response is a critical parameter of a Bubbles experiment because it allows 

to target different encapsulated mechanisms and even different processing stages of these 

mechanisms. In Caplette et al., observers pressed labeled keys to indicate if the name matched the 

object or not. Such key-press responses have been used to derive correct and incorrect responses 

(e.g., Gosselin & Schyns, 2001b; Adolphs et al., 2005; Vinette, Gosselin & Schyns, 2004; Gibson 

et al., 2007; Fiset et al., 2008; Thurman et Grossman, 2008; Langner, Becker et Rinck, 2009; 

Willenbockel et al., 2010; Lee et al., 2011; Blais  et al., 2012; Tadros  et al., 2013; Roy et al., 

2015), and response latencies (Caplette et al., 2014; Dupuis-Roy et al., 2009; Schyns, Bonnar & 

Gosselin, 2002; Willenbockel et al., 2010). Past experiments have also used 

electroencephalographic (EEG) activity (e.g., Schyns et al., 2003; Smith, Gosselin & Schyns, 

2004, 2006, 2007), magnetoencephalography (MEG; Smith et al., 2009), functional magnetic 

resonance imaging (fMRI; Smith et al., 2008), and firing rate of single cells (e.g., Wang et al., 

2014; Rutishauser et al., 2013). Other responses could be galvanic skin response, 

plethysmographic response, pupillometric response, and so forth. To the extent that Bubbles is 

essentially an empirical tool, it is recommended to record as many different responses as possible 
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(e.g., correct/incorrect, latencies and EEG in a face recognition experiment). It is sometimes 

difficult to predict before the experiment how responses will correlate with the parameters of the 

search space. 

6) The Observers? Depending on the objectives of the research, different types of observers can 

interact with the bubblized stimuli. Caplette et al. used human observers — neurotypical and 

ASD subjects, but only the neurotypical subjects will be discussed here. Brain lesion patients 

(Adolphs et al., 2005; Caldara et al., 2005), psychiatric patients (Lee et al., 2011; Clark, Gosselin 

& Goghari, 2013), animals (e.g., Gibson et al., 2005; 2007; Nielsen, Logothetis & Rainer, 2006a; 

2006b; Vermaercke & Op de Beeck, 2012) and model observers (e.g., Gosselin & Schyns, 

2001b) have also performed Bubbles experiments. 

 4.1.1.2 A coarse-to-fine sampling. Once the data are collected, the analyses can be 

performed. The goal of the search is to isolate a subspace of information correlated with the 

measured response(s). Typically, a multiple linear regression on the samples (explanatory 

variable) and the responses (predictive variable) provides this solution (e.g., Chauvin et al., 2005; 

Murray, 2012). In Caplette et al., this results in an image giving us the correlation between the 

presentation of a certain spatial frequency in a certain temporal slot and accurate responses, i.e. a 

time x spatial frequency classification image. Figure 2 shows the random-effects classification 

image of forty-nine neurotypical subjects that each completed 2,000 trials. 

 A visual inspection reveals for the first time that neurotypicals sample lower spatial 

frequencies continuously and gradually sample higher and higher spatial frequencies. Previous 

studies examining spatial frequency sampling across time (Hughes, Nozawa, & Kitterle, 1996; 

Loftus & Harley, 2004; Parker, Lishman, & Hughes, 1992; 1997; Schyns & Oliva, 1994) had 

compared a handful of spatial frequency x time conditions —two typically — and thus lacked the 
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resolution needed to reveal this information sampling pattern. We suspect that the low spatial 

frequencies are sampled continuously to allow us to discover unexpected objects and flexibly 

activate the detectors required to inspect them (see section 4.1 Compulsory feedforward 

processing sweeps). 

----------------------------------------------------------------------------------- 

Insert Figure 2 about here 

----------------------------------------------------------------------------------- 

 

4.2 Flexible iterative processing sweeps 

In light of the evidence presented in the previous section, we can say that some 

information is always being sampled or, using SLIP terminology, some detectors are active 

throughout all processing cycles. This information appears to be a band of relatively low spatial 

frequencies from 1 to approximately 20 cpi. Higher and higher spatial frequencies are sampled 

afterwards. This is a kind of coarse-to-fine visual routine. An important question remains 

however: is this routine ballistic or adaptive? That is, are later processing sweeps modulated by 

the initial feedforward processing sweep? 

 

4.2.1 Ballistic vs adaptive visual routines 

That we have uncovered significant blobs in our time x spatial frequency linear 

classification image indicates that our sampling of visual information is at least partly ballistic: 

some information is better processed at specific moments, independently of what was sampled 

before (see also Loftus & Harley, 2004). However, our visual routine can still be adaptive to 

some extent. For example, our visual system might always sample high spatial frequencies in 

later processing cycles but do so more efficiently if low spatial frequencies were sampled 



 18 

beforehand. Moreover, sampling could be ballistic on the spatial frequency dimension while 

being adaptive on another dimension. For instance, low spatial frequencies might inform us about 

which features at specific locations in the visual field to sample in high spatial frequencies 

afterwards. Many neuroscientists have argued that rapidly extracted coarse information 

modulates top-down the extraction of finer information (e.g., Bar, 2003; Bullier, 2001b; DiLollo 

et al., 2000; Hochstein & Ahissar, 2002).  

 

4.2.2 Top-down models of object recognition 

Compulsory feedforward sweeps fit well within the “standard” feedforward anatomical 

hierarchy of the visual system (Felleman & Van Essen, 1991). It is easy to understand why this 

has led mostly to bottom-up and constructivist models of information processing in the brain 

(Biederman, 1987; Marr, 1982). Recent experiments, however, have seriously challenged this 

viewpoint by showing the crucial importance of top-down processing (see also section 3.2 The 

need for flexibility). These studies have thus set the stage for new explanatory models comprising 

either simple top-down components, or complicated iterative loops. We will present three models 

that mix early compulsory feedforward processing sweeps with late iterative processing sweeps. 

According to Bar (2003), to Bullier (2001a; 2001b) and to DiLollo et al. (2000), the visual 

scene would be partially analyzed by rapid and direct projections from the early visual areas to 

the higher visual areas. This would yield a top-down working hypothesis informing the ongoing 

ascendant analysis. This descendant modulation reduces the number of possible solutions for a 

particular retinal stimulation. DiLollo’s model is not precisely constrained anatomically. The 

other two are: In Bar’s model, the information is first projected to the prefrontal cortex and comes 

back to the infero-temporal cortex; and, in Bullier’s model, it is sent to V5 and comes back to 

V1/V2. In both these models the first sweep contains low spatial frequencies. We have already 
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seen empirical evidence for this at the end of the last section (Caplette et al., submitted). Further 

evidence supports the existence of top-down processes during object recognition, and the role of 

low spatial frequencies in them; we discuss these in the next subsections. In any case, Bar’s and 

Bullier’s models are illustrated in Figure 3. 

----------------------------------------------------------------------------------- 

Insert Figure 3 about here 

----------------------------------------------------------------------------------- 

 

4.2.3 Empirical evidence for flexible and iterative processing sweeps 

Many physiological and electrophysiological studies lend support to the existence of such 

iterative processes, implicating feedback or reentrant information. We will first review three 

types of indirect evidence that have been put forward: despite what the topology of the visual 

system suggests, the visual cortex is temporally compact (Girard, Hupé, & Bullier, 2001; Hupé et 

al., 2001); the temporal characteristics of neuronal response support the idea that cortical areas 

are implicated in different visual analyses at different moments in time (Lamme & Roelfsema, 

2000; Lee, Mumford, Romero & Lamme, 1998); and low-level cortical areas like V1 can produce 

sophisticated responses incompatible with their classical function of simple feature detectors (Lee 

et al., 1998). We will then review more direct evidence that there is feedback from high order 

areas onto early visual areas during object recognition, and that low spatial frequencies play a 

particular role in the initiation of this feedback. 

 

4.2.3.1 The visual cortex is temporally compact. Two conditions must be met for the 

responses of neurons in low-level cortical areas to be modified through time: some neurons in 

higher-level areas must be activated rapidly; and these areas must feedback rapidly into the low-
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level cortical areas (Bullier, 2001b). A meta-analysis of studies that measured latencies of the 

visual response of neurons in different cortical areas revealed a temporal hierarchy that diverges 

considerably from the anatomical (classical) hierarchy (Lamme & Roelfsema, 2000). 

Furthermore, this meta-analysis showed that neurons in MT and FEF (frontal eye field) areas are 

activated as rapidly as V1 neurons (MT: minimum = 39 ms, mean = 76 ms; FEF: min = 43 ms, 

mean = 91 ms; V1: min = 35 ms, mean = 72 ms) and are activated more rapidly than neurons 

located in areas as low as V2 (min = 54 ms, mean = 84 ms) and V3 (min = 50 ms, mean = 77 ms) 

(Bullier, 2001b; Lamme & Roelfsema, 2000). This is perfectly consistent with Bar’s (2003) 

model as well as with Bullier’s (2001b). Numerous factors could contribute to this lack of 

correspondence between topology and latencies of activation. First, neurons do not receive all 

their inputs via the shortest possible paths; second, propagation speed of visual information 

differs according to neuronal pathways: a well-known distinction exists between magnocellular 

(fast), parvocellular (moderate) and koniocellular (slow) pathways; lastly, it is possible to bypass 

the LGN through, for example, the superior colliculus and the pulvinar, and to directly feed the 

extrastriate cortex with visual information (Lamme & Roelfsema, 2000). Concerning the 

conduction speed of top-down pathways, Girard et al. (2001; see also Panzeri, Rolls, Battaglia & 

Lavis, 2001) observed fast feedback from V2 to V1 (roughly 3.5 m/s). This speed is more than 

sufficient to allow for a very rapid influence of high cortical areas on lower ones. 

 

4.2.3.2 A given cortical area is implicated in different analyses at different moments. The 

response of cortical neurons is not constant. Instead, it seems that cortical neurons participate in 

different analyses at different moments (Lamme & Roelfsema, 2000). Modulations in neuronal 

responses across time have already been observed in the LGN (DeAngelis, Ohzawa, & Freeman, 

1995), V1 (Ringach, Hawken, & Shapley, 1997; 2003) and IT (Sugase et al., 1999). Ringach et 
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al. (1997), for example, have shown that while the V1 neurons receiving a direct input from LGN 

(layers 4Ca et 4Cb) have a constant preferred orientation through time, the preferred orientation 

of neurons in subsequent layers (2, 3, 4B, 5 et 6) drastically changes over time (see also Mazer, 

Vinje, McDermott, Schiller, & Gallant, 2002). It appears to be impossible to explain modulations 

such as the one just described with an exclusively feedforward model (Ringach et al., 1997). 

Instead, Lamme and Roelfsema (2000) proposed that a compulsory feedforward sweep of 

activation lasting about 100 ms is followed by horizontal (i.e., from the same cortical area) and 

top-down influence lasting about 200 ms. 

 

4.2.3.3 Low order cortical areas are responsible of sophisticated responses. Cortical 

neurons, even those of V1, are not simple detectors responding selectively to one particular 

feature of the visual scene. Some neurophysiological data (e.g. Lee et al., 1998) show that V1 is 

capable of sophisticated responses comparable with those of Ullman’s (1984) visual routines and 

Marr’s (1982) computations. As we have just seen, V1 processes different kinds of information 

over the 40-350 ms post-stimulation period. Although the initial V1 response (40-60 ms) seems 

to amount to local feature detection, numerous evidences show that subsequent responses (80-

200 ms) depend on contextual information and involve higher-level processing (Kosslyn, 

Thompson, Kim, & Alpert, 1995; Lee et al., 1998). According to Lee et al. (1998), the time-

course of the V1 response argues for its gradual involvement in more and more sophisticated 

computations, and for its implication in tasks as complex as figure-ground segmentation and 

object recognition. In sum, V1 would not be a simple module used in the processing of local 

features but would rather be a high-resolution buffer used for all sorts of visual processing feats. 
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4.2.3.4 High order areas feedback on early visual areas. Some studies provide more 

direct evidence of top-down mechanisms in vision. Hupé et al. (2001) have demonstrated a 

significant feedback effect of MT on V1, V2 and V3 less than 10 ms after deactivation (see also 

Girard et al., 2001), and a series of transcranial magnetic stimulation (TMS) experiments with 

macaques and humans have shown that top-down processing is necessary for visual 

consciousness (Pascual-Leone & Walsh, 2001; Ro, Breitmeyer, Burton, Singhal, & Lane, 2003; 

Walsh & Cowey, 1998). For example, Pascual-Leone and Walsh (2001) impaired the conscious 

perception of moving phosphenes “normally” produced by stimulating area MT with TMS by 

stimulating area V1/V2 with TMS, 5 to 40 ms later. The most plausible interpretation of this 

result is that MT activation is not sufficient to perceive moving phosphenes, that this perception 

requires V1/V2 in order to provide a spatial context to the stimulation. Other cortical areas 

responsible for conscious perception would also suffer from an interruption in top-down 

communication between MT and V1/V2 by not receiving enough activation (Bullier, 2001a; 

Pascual-Leone & Walsh, 2001; Pollen, 2003). 

 

4.2.3.5 Low spatial frequencies initiate top-down processing. In an object recognition task 

in MEG and fMRI, Bar et al. (2006) revealed distinctive activity in the orbitofrontal (OFC) 

cortex when an object was recognized, 50 ms earlier than in recognition-related areas in the 

temporal cortex. Moreover, this activity was preferentially modulated by low spatial frequencies 

(see also Kauffman, Bourgin, Guyader, & Peyrin, 2015). Results from Kveraga, Boshyan, & Bar 

(2007) using stimuli biased toward magnocellular processing in luminance and color further 

suggested that fast magnocellular projections (known to transmit lower SFs) were playing a 

critical role in the initiation of a top-down processing from the OFC. Peyrin et al. (2010) also 

demonstrated that higher frontal and temporal areas responded more to low SF stimuli when they 
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were presented before high SF stimuli, and that occipital areas responded more to high SF stimuli 

when they were presented after low SF stimuli. This suggests that low SFs initiate a top-down 

processing from higher areas, which enhances neural activity to high SFs in the early visual 

cortex. It has been shown that top-down expectations elicit a template of the stimulus 

representation in early visual areas (Kok, Jehee, & de Lange, 2012; Kok, Failing, & de Lange, 

2014): hence, this enhanced neural activity is likely to be a coarse representation of the stimulus 

(and not only an unspecific global attention effect). Recently, Goddard et al. (2016) did observe, 

using Granger causality analysis, an early feedback flow of information driven by low SFs. 

Together, these findings support the initiation of top-down mechanisms, or flexible iterative 

processing sweeps, by low spatial frequencies during object recognition. 

 

5. General Discussion 

We could not come to terms with finishing this chapter without having even attempted to 

incorporate these relatively novel considerations about the necessity of having both compulsory 

and flexible feature detectors into a categorization model. Although we will not describe a fully 

articulated model here, we will “day dream” about such a model within the SLIP framework. 

So the question is: What is the optimal way to use a subset of s flexible feature detectors to put 

an unknown object into one or many categories given Ht, a subset of our entire category 

hierarchy at processing cycle t, and C, a set of compulsory feature detectors? Our working idea is 

to apply Bayes’ theorem sequentially (for another example of sequential use of Bayes’ theorem in 

categorization, see Anderson, 1990, 1991; Gershman, Horvitz, & Tenenbaum, 2015) to estimate 

𝑃 𝑓#,%&' , the probability of encountering feature i in the environment at processing cycle t+1 

given all the elements that we have already listed plus di,t, the fact that we have or have not 
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detected this feature either with compulsory or flexible feature at processing cycle t. Bayes 

theorem warrants that 

𝑃 𝑓#,%&' = 𝑘*'𝑃 𝑓#,% 𝑃 𝑑#,% , 𝑓#,%  (Equation 3), 

where k is equal to 𝑃 𝑓#,% 𝑃 𝑑#,% , 𝑓#,%# . And, finally, at processing cycle t+1, to activate 

sP(fi,t+1) flexible detectors of feature i. 

To illustrate the computation of the two main components of Equation 3, consider once 

more Pi Patel on his raft facing an unknown thing. During the first processing cycle, Pi Patel 

detects distinctive tiger marks on the unknown thing with one of its compulsory feature 

detector. This implies that only the features found in the “tiger” branches of Pi Patel complete 

category hierarchy should be looked for at time t+1; there is absolutely no need to search 

those found in the “inanimate” branches or in the “all animals except tiger” branches. 

Fortunately for us, Pi Patel knows only two tigers: “Richard Parker” – defined by the 

additional Richard Parker’s eye color feature – and Walt Disney’s rendition of “Shere Khan” 

– defined by the additional Shere Khan’s eye color feature –, the tiger from Rudyard Kipling’s 

classic. Assuming that both these features are detectable by unique flexible feature detectors, 

we have P(fi,t) = .5, with i = {Richard Parker’s eye color, Shere Khan’s eye color}. All the 

other flexible detectors should be given a probability of being part of the unknown object 

equal to 0. In the Bayes’ theorem, this probability function is called the prior. 

Is that all we can derive from the first processing cycle? No, we can also gain information 

about what is not out there based on both the flexible and the compulsory feature detectors that 

were activated but have remained quiet. Suppose for example that some detectors of Shere 

Khan’s eye color were activated during this first processing cycle but did not fire. Either the 

unknown thing does not possess the Shere Khan’s eye color feature, or it does but the 
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detectors failed to detect it. We have already mentioned the latter in the first section of this 

chapter: in fact, P(dit|fi,t) = φi . Let us suppose, for the sake of the present illustration, that, in 

the present case, this quantity is equal to .5. And because no Richard Parker’s eye color 

flexible feature detectors were activated during processing cycle t, its associated P(dit|fi,t) is 

given a value of 1. This probability function is known as the likelihood in Bayes’ theorem. 

Combining the prior and the likelihood as shown in Equation 3, we obtain probabilities of 

(.5 * 1) / (.5 * 1 + .5 * .5) = 2/3 for the Richard Parker’s eye color and (.5 * .5) / (.5 * 1 + .5 * 

.5) = 1/3 for the Shere Khan’s eye color. This probability function is called the posterior in 

Bayes’ theorem. Finally, the posterior is multiplied by s to set the activation level of the 

flexible feature detectors at processing cycle t+1. Let’s assume for the sake of the argument 

that Pi Patel can simultaneously activate 90 flexible feature detectors (see section 4.1), he 

would thus activate 2/3 * 90 = 60 and 1/3 * 90 = 30, for Richard Parker’s eye color and for 

Shere Khan’s eye color, respectively. An entirely satisfying account of the time course of 

object, scene and face categorization would address two more points: 1) how do evolutionary 

pressures promote the cohabitation of mandatory and flexible detectors; and 2) how do 

evolutionary pressures select the fixed detectors. Work by Geisler and Diehl (2002, 2003) that 

combines Bayesian models of perception with Bayesian models of evolution seems like the 

most promising avenue to tackle these issues. 

We have presented SLIP, a formal model for thinking about the time course of object, 

scene and face categorization. Next, we argued that our limited visual processing capacities 

lead to the necessity of having a flexible categorization apparatus, and that this inexorably 

brings about a paradox — how can we flexibly adjust to the environment before knowing what 

is out there? Finally, we proposed an embryonic solution of this paradox within the SLIP 
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framework, sampling ideas from the fields of vision, neuropsychology and physiology. That 

is, detectors of low spatial frequencies might be active throughout all recognition to allow 

unexpected objects to be discovered and flexibly guide the activation of other detectors (i.e. 

determine which features to extract afterwards). We have provided some evidence toward this 

possibility; however, the existence of such an adaptive process remains to be directly 

investigated.  
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Figure captions 

 

Figure 1. (a) The four scenes used in this experiment and the corresponding low-level category names learned by all 

participants (“field”, “mountain”, “desert”, and “dune”), and the high-level categorizations (“flat” and “hilly”) that 

LUMI observers learned. The two histograms illustrate the RT curves of a SLIP putting a scene in a high- and a low-

level category. (b) Proportion of the four error types in function of presentation time for each observer group. The 

solid and dashed lines are, respectively, the average bestfits of the SLIP model to the LUMI and to the CHRO 

participants individual data points. The black curves represent the proportion of errors on none of the perceptual 

dimensions (e.g., respond “field” when presented with a field scene); the green curves represent the proportion of 

errors on the luminance dimension (e.g., respond “mountain” when presented with a field scene); the red curves 

represent the proportion of errors on the chrominance dimension (e.g., respond “desert” when presented with a field 

scene); and the blue curves represent the proportion of errors on all dimensions (e.g., respond “dune” when presented 

with a field). Adapted from Gosselin (2000). 

 

Figure 2. Random-effects classification image illustrating how SF-time pixels correlate with accurate object 

recognition. Pixels enclosed by black lines are significant (p < .05, one-tailed). 

 

Figure 3. This outlines the models of Bullier (2001b) and of Bar (2003). According to Bullier (2001b), an iterative 

loop joins the V1/V2 area and MT/MST one. According to Bar (2003), an analogue loop starts from the V2/V4 area, 

goes through ventrolateral and orbital PFC and retro-injects information into IT and the amygdala. (LGN : lateral 

geniculate nucleus; PFC : prefrontal cortex; IT : inferotemporal). 
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Figure 3. 
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