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Horizontal information was recently suggested to be
crucial for face identification. In the present paper, we
expand on this finding and investigate the role of
orientations for all the basic facial expressions and
neutrality. To this end, we developed orientation bubbles
to quantify utilization of the orientation spectrum by the
visual system in a facial expression categorization task.
We first validated the procedure in Experiment 1 with a
simple plaid-detection task. In Experiment 2, we used
orientation bubbles to reveal the diagnostic—i.e., task
relevant—orientations for the basic facial expressions
and neutrality. Overall, we found that horizontal
information was highly diagnostic for expressions—
surprise excepted. We also found that utilization of
horizontal information strongly predicted performance
level in this task. Despite the recent surge of research on
horizontals, the link with local features remains
unexplored.We were thus also interested in investigating
this link. In Experiment 3, location bubbles were used to
reveal the diagnostic features for the basic facial
expressions. Crucially, Experiments 2 and 3 were run in
parallel on the same participants, in an interleaved
fashion. This way, we were able to correlate individual
orientation and local diagnostic profiles. Our results

indicate that individual differences in horizontal tuning
are best predicted by utilization of the eyes.

Introduction

Complex states of mind such as emotions can be
inferred simply by looking at other people’s faces.
Thus, the human face can be seen as a tool for
nonverbal communication (e.g., Haxby, Hoffman, &
Gobbini, 2000; Jack & Schyns, 2015), and the skill to
competently process this visual information is likely an
important one for successful social interactions. The
mechanisms underlying this task have been studied for
almost a century already (e.g., Dunlap, 1927). How-
ever, it is only recently that the low-level visual
properties underlying this skill have started to garner
attention.

In human early visual cortices, the variations in
luminance that make up complex stimuli are processed
by discrete channels, sensitive to specific spatial
frequency and orientation values (for review, see De
Valois & De Valois, 1990). Their various combinations
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play the crucial role of giving visual signals their form
and shape—which can then be interpreted by higher
visual cortices as features, faces, and expressions.
Specific features, for instance, need to be revealed in
distinct spatial frequency bands for optimal face
identification (e.g., Butler, Blais, Gosselin, Bub, &
Fiset, 2010; Gosselin & Schyns, 2001; Schyns, Bonnar,
& Gosselin, 2002) and expression categorization (e.g.,
Smith, Gosselin, Cottrell, & Schyns, 2005). Face
identification has also been shown to rely on a specific
range of spatial frequencies (e.g., Gaspar, Sekuler, &
Bennet, 2008; Gold, Bennett, & Sekuler, 1999;
Näsänen, 1999; Royer et al., 2017; Willenbockel, Fiset,
et al., 2010). Relatedly, it has been shown that the
spatial frequency spectrum is a good predictor of the
distance at which facial expressions are better recog-
nized (Smith & Schyns, 2009).

More recently, studies in the field of face perception
have begun to investigate the orientation spectrum of
visual signals and revealed its high importance for the
visual system. More specifically, research has demon-
strated that horizontal information is especially critical
for accurate face detection (Balas, Schmidt, & Saville,
2015) and identification (Dakin & Watt, 2009; Goffaux
& Dakin, 2010; Pachai, Sekuler, & Bennett, 2013).
They have also shown that sensitivity to horizontal
information increases with familiarity (Pachai, Sekuler,
Bennett, Schyns, & Ramon, 2017), and strongly
correlates with face identification ability (Pachai et al.,
2013).

The case for horizontal information was also made
stronger by the fact that the face inversion effect—that
is, a disproportionate decline in face identification
accuracy when faces are presented upside-down (Yin,
1969)—is mainly associated with a reduction in
sensitivity to horizontal information (Goffaux &
Dakin, 2010; Goffaux & Greenwood, 2016; Pachai et
al., 2013). It is also reinforced by findings that have
linked this information with face-selective neuroimag-
ing markers. The electrophysiological N170 face-
selective component (for review, see Eimer, 2011;
Rossion, 2014), for instance, appears to be linked with
the processing of horizontal information in faces.
Indeed, this component typically shows a distinct
increase in amplitude upon perception of inverted
faces, and this ‘‘N170 face inversion effect’’ is
dampened when the phase of horizontal information is
randomized (Jacques, Schiltz, & Goffaux, 2014). In
addition, the functionally defined ‘‘fusiform face area’’
(FFA; Kanwisher, McDermott, & Chun, 1997), sug-
gested to be the cortical source of the N170 (Sadeh,
Podlipsky, Zhdanov, & Yovel, 2010), was also reported
to exhibit horizontal selectivity for faces (Goffaux,
Hausfeld, Schiltz, & Goebel, 2016).

At the moment, very little is known about the visual
system’s reliance on the orientation spectrum during

facial expression recognition. As is the case for face
identification, however, the discrimination between
happy and sad facial expressions has been shown to
rely disproportionately on horizontal information
(Balas & Huynh, 2015; Huynh & Balas, 2014).
Interestingly, vertical information was also shown to be
useful for this task, but only when emotions are
expressed with an open mouth. These crucial findings
by Balas and Huynh (2014, 2015) are the first to suggest
that horizontal information plays an important role in
the categorization of facial expressions, but they are
also limited in two ways. First, it has been established
that diagnostic—that is, task-relevant—information
varies as a factor of task demand (e.g., Gosselin &
Schyns, 2001; Schyns et al., 2002). It has also been
shown that diagnostic information for a given expres-
sion changes as a function of the expression against
which it is compared (e.g., afraid vs. happy, or afraid
vs. angry), and of the number of expressions (e.g., two,
three, or seven) against which it is compared (Smith &
Merlusca, 2014). It is therefore possible that these
results pertaining to horizontal—and vertical— infor-
mation are specific to the ‘‘happy versus sad’’ discrim-
ination paradigm and not indicative of the processes
underlying the categorization of other facial expres-
sions. The second limitation is linked with the fact that
performance was only compared for horizontal and
vertical information. Unlike facial identity, expressions
are more heterogeneous and dynamic by nature, and
thus involve considerable feature shape differences at
their apex. This could have an effect on the distribution
of energy along the orientation spectrum which is not
accounted for by the measured orientations subset. In
our opinion, these limitations warrant an uncon-
strained investigation of the entire orientation spectrum
for all the facial expressions.

It is generally proposed that there are six basic
emotion categories: anger, disgust, fear, happiness,
sadness, and surprise (Ekman & Friesen, 1975; Izard,
1971; but also see Jack, Sun, Delis, Garrod, & Schyns,
2016). The distribution of diagnostic cues varies
considerably across facial expressions (Eisenbarth &
Alpers, 2011; Fiset et al., 2017; Jack, Garrod, &
Schyns, 2014; Smith et al., 2005; Smith & Merlusca,
2014; Smith & Schyns, 2009; Wang, Friel, Gosselin, &
Schyns, 2011). Upper facial features, for instance, are
particularly diagnostic of the expressions of fear,
sadness, and anger, whereas lower features are more
diagnostic of the expressions of surprise, disgust,
happiness, and of neutrality. Despite these differences,
however, evidence suggests that the mouth is used to a
greater extent than the eyes when categorizing facial
expressions (Blais, Roy, Fiset, Arguin, & Gosselin,
2012; Calvo, Fernández-Martı́n, & Nummenmaa, 2014;
see also Blais et al., 2017; Peterson & Eckstein, 2012).
To the best of our knowledge, the link between facial
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features and orientations has never been investigated
before. Because orientation is a global image property,
it is impossible to know with certainty which facial
features are used in a given orientation band. There are,
however, some informative clues in this regard. Face
identification, for instance, is usually explained in terms
of utilization of the eye region (Butler et al., 2010;
Caldara et al., 2005; Gosselin & Schyns, 2001; Royer,
Blais, Déry, & Fiset, 2016; Schyns et al., 2002; Sekuler,
Gaspar, Gold, & Bennett, 2004), a region that is
particularly rich in horizontal mid-to-high spatial
frequency content (Keil, 2009). This is of particular
interest, given that the processing of facial horizontal
information was shown to be largely supported by this
range of spatial frequencies (Goffaux, van Zon, &
Schiltz, 2011). Thus, we could reasonably expect that
processing of horizontal information and of the eye
region are intimately linked—at the very least in a face
identification task. The question, however, was never
directly investigated for any type of face processing
task and thus remains the product of speculation.

The present research had two main objectives. First,
we wanted to thoroughly examine the role of orienta-
tions in the processing of facial expressions, accounting
for all the basic emotion categories and neutrality.
Because we did not want to limit our exploration to a
subset of the orientation spectrum, we developed
orientation bubbles. Like bubbles (Gosselin & Schyns,
2001; Schyns et al., 2002) and spatial frequency bubbles
(Willenbockel et al., 2010), orientation bubbles is a data-
driven procedure which randomly samples the dimen-
sion of interest—here, the orientation spectrum—over a
number of trials to quantify its use by the visual system.

Second, we wanted to explore the link between
utilization of the orientation spectrum and of local
facial cues during expression categorization. Because
this bridging attempt is completely novel, we opted to
investigate the question with two separate tasks which
were accomplished by the same participants in an
interleaved fashion: one with orientation bubbles, and
the other with location bubbles. On its own, each task
allowed us to replicate previous findings; and the
orientation bubbles task allowed us to also expand
upon the existing literature. We were then able to
correlate individual orientation and local profiles to
reveal the link between orientation diagnosticity and
facial feature diagnosticity.

Below, we report the results of three experiments. In
Experiment 1, we assessed the validity of orientation
bubbles using a simple plaid detection task. In
Experiment 2, we used orientation bubbles to reveal the
diagnostic orientations for each of the basic facial
expressions and neutrality in a categorization task.
Experiment 3 was identical to Experiment 2, except
that stimuli were instead randomly sampled with
location bubbles (see experiment 1 in Gosselin &

Schyns, 2001). Critically, Experiments 2 and 3 were run
in parallel on the same participants, in an interleaved
fashion. To anticipate the results, we found horizontal
information to be highly diagnostic for neutrality and
all the basic facial expressions except surprise. We also
found that individual differences in horizontal tuning
strongly correlate with the aptitude with which the
categorization of expressions is carried. Finally, we
show that horizontal tuning is best predicted by
diagnosticity of the eye region.

Experiment 1

The main purpose of this experiment was to test
whether orientation bubbles can successfully reveal the
precise orientation content that is diagnostic of a task.
To this end, we employed a detection task similar to the
one employed by Willenbockel, Fiset, and colleagues
for a similar purpose (experiment 1; 2010). A plaid—
the sum of two sinusoidal gratings with orthogonal
orientations—was randomly filtered in the orientation
domain with orientation bubbles, and subjects were
asked to indicate whether the stimulus was present or
absent. We then applied a classification image analysis
(Eckstein & Ahumada, 2002; Gosselin & Schyns, 2004),
aiming to retrieve the plaid’s embedded orientation
signals from orientation bubbles data.

Methods

Participants

Ten subjects were recruited at the University of
Québec in Outaouais (UQO) and received a sum
equivalent to 12$ per hour for their participation. All
had normal or corrected-to-normal visual acuity. This
experiment was approved by the Research Ethics
Committee at the University of Québec in Outaouais
and was conducted in accordance with the Code of
Ethics of the World Medical Association (Declaration
of Helsinki).

Apparatus

The experiment was conducted on Apple Mac Mini
computers (Intel i7 2.6GHz processor) using custom
programs written in Matlab (Natick, MA), and
functions from the Image Processing Toolbox and the
Psychophysics toolbox (Brainard, 1997; Pelli, 1997).
Stimuli were displayed on a 23-in Samsung LCD
monitor with evenly distributed luminance levels. The
stimulus average luminance was equal to that of the
uniform gray background (107.2 cd/m2). Screen
resolution was set to 1920 31080, and the refresh rate
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was 100 Hz. Participants sat in a dark room, and a chin
rest was used to ensure that they maintained a viewing
distance of 57 cm.

Procedure

Participants were instructed to perform a plaid
detection task. The original plaid, a 256 3 256 pixels
array subtending 6.88 of visual angle, was constructed
by summing two sinusoidal gratings with a spatial
frequency of 27.2 cycles/image or four cycles/8: one
with an orientation of�908 (horizontal), and the other
with an orientation of�1808 (see Figure 1A). The phase
of both gratings was randomized on each trial. On
target-present trials (probability of 50%), the plaid was
randomly filtered in the orientation domain with
orientation bubbles (below) and embedded in Gaussian

white noise. On target-absent trials, only Gaussian
white noise was presented.

A trial began with the presentation of a fixation cross
(450 ms), which was followed by the stimulus (850 ms).
The screen then went blank and remained as such until
the subject responded using the appropriate keys on the
keyboard. Subjects first performed 10 practice trials,
and then completed three blocks of 100 trials each.

Orientation bubbles

At the beginning of a trial, the orientation content of
a stimulus—here, a plaid—was randomly sampled using
custom code (available at the address http://lpvs-uqo.ca/
wp-content/uploads/2017/06/orbs.zip) and functions
from the Image Processing Toolbox in Matlab. The
procedure, described below, is illustrated in Figure 1.

First, a target image (Figure 1A) was run through
the Fast Fourier Transform (FFT) algorithm to
generate its Fourier spectrum (Figure 1B). Second, an
orientation sampling vector was created (Figure 1C). It
consisted in ten pairs of ‘‘Von Mises’’ orientation
samples, or orientation bubbles. The Von Mises is a
circular function analogous to the Wrapped Normal
distribution and ranges from�1808 toþ1808. It has two
parameters: l, which designates the orientation (in
degree) at which the distribution peaks, and j, which
determines the width (in degree) of the distribution.
One bubble comprised two Von Mises, one with
parameters li and j, and the second with parameters
liþ1808 and j—the second Von Mises ensures identical
sampling of the symmetrical FFT quadrants. The li
parameters, with I¼1 to 10, were randomly drawn with
replacement from a rectangular distribution of all
orientations, whereas the j parameter was always equal
to 45.51 (full width at half maximum [FWHM]¼ 208),
which corresponds approximately to the estimated
width of the orientation channels in face identification
(Dakin & Watt, 2009). The sampling proportions of the
orientation sampling vector were capped at 1 (since
they can be greater than 1 if two or more bubbles are
close to each other). Third, an orientation sampling
matrix of dimension 2563 256 was created (Figure 1D)
by applying the orientation sampling vector to an
orientation matrix. This orientation matrix was equal
to tan�1[(y� 127)/(x� 127)], with x and y corre-
sponding, respectively, to the column and the row of
the orientation matrix. Fourth, and finally, the
orientation sampling matrix was dot-multiplied with
the image Fourier spectrum, and the resulting Fourier
spectrum was inverse Fast Fourier Transformed
(Figure 1E). Gaussian white noise was added to the
filtered stimulus to maintain performance at 75% of
correct responses. The appropriate noise level was
estimated on a trial-by-trial basis using QUEST
(Watson & Pelli, 1983).

Figure 1. Illustration of orientation bubbles filtering. A plaid (A)

is converted to its Fourier spectrum with the Fast Fourier

Transform (FFT) algorithm, and its quadrants are shifted (B). An

orientation sampling vector (C) is created by summing ten pairs

of Von Mises orientation samples (orientation bubbles). Then,

the orientation sampling matrix (D) is created by applying the

orientation sampling vector to an orientation matrix. Orienta-

tion filtering is carried by dot multiplying (.*) the orientation

sampling matrix and the shifted plaid Fourier spectrum. The

experimental stimulus is then reconstructed by Inverse-FFT

(IFFT), and Gaussian white noise is added (E).
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Results and discussion

To find out which parts of the orientation spectrum
were associated with accuracy, we first performed for
each subject what amounts to a multiple linear
regression analysis of orientation sampling vectors
(independent variable) on response accuracy scores
(dependent variable). The logic here is that the more
the information revealed by orientation bubbles
matches observer representations, the greater the
probability of a correct response. The analysis was
conducted on ‘‘plaid present’’ trials, and carried out by
calculating a weighted sum of the orientation sampling
vectors, allocating positive weights to filters associated
with correct responses and negative weights to filters
associated with incorrect responses. To give equal
weight to correct and incorrect trials, accuracy scores
were transformed into z scores across the appropriate
subset of trials. The outcome was a series of 10 vectors
of spatially correlated regression coefficients—hence-
forth called classification vectors, or CVs—quantifying
the strength of association between orientations and
accurate detection of the plaid. Every CV was then
individually z scored with the mean and standard
deviation of the null hypothesis; the parameters of
which were estimated by simulating 100 CVs. Each
simulated CV was generated with a weighted sum of
orientation sampling vectors, using instead random
permutations of z-scored accuracies from the ‘‘plaid
present’’ trials subset.

To retrieve the plaid’s diagnostic information, a
group CV was created by first summing individually z-
scored CVs across subjects, and then dividing the
outcome by =n, where n is the sample size. A pixel test
(Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005)
was used to determine the statistical threshold (Zcrit¼
2.49, p , 0.05; one-tailed). The pixel test applies a
statistical correction for multiple observations, while
also taking into account the spatial correlation that
results from the 1D orientation bubble size.

Results for half of the symmetric orientation
spectrum are shown in Figure 2, which plots the z-
scored regression coefficients (black line) and the
significance threshold (gray dotted line) along the
orientation spectrum. These coefficients represent the
strength of the correlation between orientation and
performance. As expected, two significant peaks
emerge near the�1808 vertical axis (Zmax¼ 13.26) and
the�908 horizontal axis (Zmax¼ 11.15).

We used a 50% ‘‘area orientation measure’’ (AOM;
analogous to the fractional area technique used to
estimate component latencies in electrophysiological
studies) to estimate peak positions. This method was
chosen because it is less sensitive to the shape of tuning
curves (for a similar application of the procedure, see
Tadros, Dupuis-Roy, Fiset, Arguin, & Gosselin, 2013).

The AOM estimates of the vertical and horizontal
peaks were�0.628 (20.48 bandwidth) and�88.648 (18.38
bandwidth), respectively. Neither the vertical, t(9) ¼
0.75, CI 95 ¼ [�3.668, 1.838], p . 0.05) nor the
horizontal, t(9)¼ 0.04, CI 95¼ [�4.048, 3.98], p . 0.05)
peak significantly differed from its respective reference
(�1808, �908) value.

Critically, no other part of the orientation spectrum
correlated with task responses. We are thus confident
that orientation bubbles can effectively recover the
diagnostic orientations for a task.

Experiment 2: Orientation bubbles

Experiment 2 was designed to reveal the diagnostic
orientation content for the successful categorization of
the basic facial expressions (anger, disgust, fear,
happiness, sadness, surprise) and of neutral expres-
sions. Importantly, the blocks of Experiment 2 and 3
were interleaved within subjects. Fifty percent of
participants began with a block from Experiment 2,
and the other fifty percent began with a block from
Experiment 3.

Methods

Participants

Forty subjects participated in Experiments 2 and 3.
They received a sum equivalent to 12$ per hour for
their participation. All had normal or corrected-to-
normal visual acuity. This experiment was approved by
the Research Ethics Committee at the University of

Figure 2. Experiment 1 group classification vector. Orientation

bubbles accurately revealed the diagnostic information of the

plaid, with significant peaks emerging at �0.628 (vertical axis)

and �88.148 (horizontal axis), Zcrit ¼ 2.49, p , 0.05.
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Québec in Outaouais and was conducted in accordance
with the Code of Ethics of the World Medical
Association (Declaration of Helsinki).

Apparatus

In this experiment, only the monitor and viewing
distance differed from Experiment 1. The monitor was
a 24-inch BenQ LCD monitor with a refresh rate of 120
Hz and evenly distributed luminance levels. Screen
resolution was 1920 3 1080. Participants sat in a dark
room, and a chinrest was used to ensure that they
maintained a distance of 65 cm between them and the
screen.

Stimuli

Seventy gray scale pictures of faces, 10 identities (five
females and five males) times seven facial expression of
emotions from the Karolinska Directed Emotional
Faces (KDEF) database (Lundqvist, Flykt, & Öhman,
1998) were used. Each identity depicted the six basic
facial expressions and neutrality. Faces were spatially
aligned on the positions of the main internal facial
features—eyes, nose, mouth—using translation, rota-
tion, and scaling.

Images were downscaled to a resolution of 2563 256
pixels, and a gray oval that blended with the
background (66.33 cd/m2) was applied to the face in
order to hide the facial contour and external features.
Faces spanned 4.38 of visual angle horizontally (6.1
vertically). The spatial frequency spectra and lumi-
nance histograms of images were equalized with the
SHINE toolbox (Willenbockel, Sadr, et al., 2010) to
minimize the influence of low-level variance across
stimuli on observer responses, and thus better capture
the contribution of internal representations.

Procedure

Before the experimental tasks started, participants
were initially given a maximum of 20 min to familiarize
themselves with the stimuli. Then, they completed
several training blocks (140 trials each) in which they
were required to reach a performance criterion of 95%
correct categorization for each facial expression indi-
vidually. Those training blocks were meant to prepare
the participants for both the orientation bubbles
(Experiment 2) and location bubbles (Experiment 3)
tasks.

A training trial began with a fixation cross (500 ms)
located in the middle of the screen, followed by a face
stimulus that remained on the screen until the correct
response was given. Participants responded by pressing
one of the seven assigned keys on the computer’s
keyboard—that is, one key per expression category. If

an error was made, the correct expression label
appeared 18 of visual angle below the face, and
participants were instructed to re-examine the stimulus
and input the correct answer—trial response was still
considered incorrect. Input of the correct answer
automatically initiated the next practice trial or ended
the block if all trials had been completed. Participants
completed as many practice blocks as was needed to
reach the performance criterion (M¼ 3.46, SD¼ 2.01),
and then moved on to the experimental tasks.

Participants completed a total of twenty-four ex-
perimental blocks, each comprising 140 trials. They
started with either a block of orientation bubbles
(Experiment 2) or location bubbles (Experiment 3), and
subsequently alternated between one block of each
task. Experiments 2 and 3 thus each comprised a total
of 1,680 experimental trials, with 240 trials per facial
expression.

An experimental trial began with a fixation cross
(500 ms) in the center of the screen. It was immediately
followed by a face stimulus (150 ms) filtered with
orientation bubbles (examples can be seen in Figure
3), after which, the screen went blank until partici-
pants responded using one of the seven assigned
keyboard keys—i.e., one key per expression. Task
difficulty was controlled by adjusting the RMS
contrast of orientation-filtered faces in order to
maintain the criterion performance of 57.14% correct
responses—that is, halfway between 100% correct
(perfect) and 14.3% correct (chance) responses. The
appropriate RMS contrast level of filtered face stimuli
was estimated on a trial-by-trial basis, using QUEST
(Watson & Pelli, 1983), and dithering was applied to
reduce aliasing (Allard & Faubert, 2008). Image
contrast was modulated for overall performance—
instead of independently for each expression—because
all expressions are not equally easy to categorize, and
we did not want the contrast level to act as a cue to the
correct response.

Results and discussion

The first two experimental blocks were discarded for
the analysis. Participants needed an average RMS
contrast of 0.0134 (SD¼ 0.009) to respond correctly on
57.14% of trials, and the overall average response time
on correct trials was 1,238 ms (SD¼ 212 ms).
Performance (percent correct) varied considerably
across facial expressions: anger (M ¼ 54.9%, SD¼
13.8%), sadness (M¼61.9%, SD¼12.7%), disgust (M¼
57%, SD ¼ 12.5%), fear (M ¼ 53.8%, SD¼ 12.1%),
happiness (M ¼ 91.3%, SD ¼ 4.5%), surprise (M ¼
66.5%, SD¼ 14.6%), and neutrality (M¼ 62.7%, SD¼
15.9%). Response times (milliseconds) on correct trials
also varied between facial expressions: anger (M ¼
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1,359, SD¼ 334), sadness (M ¼ 1,286, SD ¼ 238),
disgust (M ¼ 1,358, SD¼ 215), fear (M ¼ 1,569, SD¼
336), happiness (M ¼ 910, SD¼ 249), surprise (M ¼
1,299, SD¼ 281), and neutrality (M¼ 1,180, SD¼ 249).

To uncover which parts of the orientation spectrum
were associated with accuracy, we first performed, for
each subject and expression combination, what
amounts to a multiple linear regression analysis of
orientation sampling vectors on response accuracy
scores. The analysis was carried by calculating a
weighted sum of orientation sampling vectors, allo-
cating positive weights to filters associated with
correct responses and negative weights to filters
associated with incorrect responses. The weights in
question were the accuracy scores from the appropri-
ate subset of trials—angry trials for anger, and so
forth—which were transformed into z scores. The

outcome was thus a series of 40 3 7 classification
vectors (CVs). That is, for every subject, seven CVs
(one per expression) were created. Every CV was then
individually z scored with the mean and standard
deviation of the null hypothesis, the parameters of
which were estimated by simulating 100 CVs with
random permutations of z-scored accuracies from the
appropriate subset of trials.

To retrieve the diagnostic information for individual
expressions, seven group CVs (one per expression) were
obtained by first summing individually z-scored CVs
within expression and across subjects, and then
dividing the outcome by =n, where n is the number of
subjects. To retrieve the diagnostic information for
combined expressions, a pooled expressions CV was
created by first summing the above group CVs, and
then dividing the outcome by =e, where e is the
number of expressions. A two-tailed pixel test (Chauvin
et al., 2005) was used to determine the statistical
threshold (Zcrit ¼ 2.49, p , 0.05).

Results for half of the symmetrical orientation
spectrum are shown in Figure 4, which plots the z-
scored regression coefficients (red line) and the
significance thresholds (gray dotted lines) along the
orientation spectrum, for each individual expression
and for combined expressions. Additionally, Figure 4
also shows expressions revealed through their respec-
tive diagnostic filters (bottom images). As can be seen,
information bundled around the�908 horizontal axis is
diagnostic for anger (Zmax ¼ 4.72), disgust (Zmax ¼
6.59), fear (Zmax ¼ 3.9), happiness (Zmax ¼ 2.85),
sadness (Zmax ¼ 6.41), neutrality (Zmax¼ 7.83), and
pooled expressions (Zmax ¼ 11.67), all ps , 0.05. The
only exception is surprise, for which information at the
�157.58 oblique-vertical axis is diagnostic (Zmax¼
3.17, p , 0.05). Furthermore, and in addition to
information around the horizontal axis, information
around the �1808 vertical axis was also marginally
diagnostic for the correct categorization of fear (Zmax
¼ 1.62, p , 0.1). It thus appears that overall, facial
expression categorization as a process is strongly
supported by horizontal information.

Moreover, there were also emotion categories for
which there was information that negatively correlated
with performance. This orientation information, when
revealed, tends to systematically lead to incorrect
responses (i.e., antidiagnostic information; see, for
example, Roy, Fiset, Taschereau-Dumouchel, Gosse-
lin, & Rainville, 2013). We have found antidiagnostic
information for anger (Zmin¼�2.52), disgust (Zmin¼
�3.35), fear (Zmin¼�2.81), sadness (Zmin ¼�4.28)
and neutrality (Zmin¼�4.75), but not for happiness or
surprise. Contrary to diagnostic information, which is
largely bundled near the horizontal axis, antidiagnostic
information is scattered along the rest of the orienta-
tion spectrum. Expressions revealed through their

Figure 3. Examples of orientation bubbles filtered stimuli (left

column), along with the corresponding orientation sampling

matrices (right column), as applied in Experiment 2. Image

[BF01AFS] from the KDEF recreated with the copyright holder’s

permission.
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respective antidiagnostic filters can be observed in
Figure 4 (top images). Antidiagnostic disgust looks like
anger, and disgust was in fact miscategorized as anger
on 18.6% of trials; antidiagnostic fear looks like
surprise, and fear was in fact miscategorized as surprise
on 19.3% of trials; finally, antidiagnostic sadness looks
like disgust, and sadness was in fact miscategorized as
disgust on 10.3% of trials. Although it is less obvious
looking at antidiagnostic anger and neutrality, angry
and neutral stimuli were both miscategorized as sadness
on 11.2% and 12.2% of trials, respectively.

To benchmark information across face orientation
spectra, we built a model observer (for details, see Blais
et al., 2012; Smith et al., 2005) that was subjected to the
orientation bubbles task with essentially the same
experimental constraints as our human observers.
Thus, the model performed the same number of trials,
with the same orientation bubbles filters, and the same
performance criterion—i.e., 57.14% overall correct
responses. On each trial, an orientation sampling
matrix was created and it was applied to the trial
stimulus and to each of the possible 70 face images.
However, instead of modulating stimulus RMS con-
trast, we modulated the proportion of Gaussian white
noise—estimated with QUEST (Watson & Pelli,
1983)—that was added to the masked stimulus. Thus
stimulus RMS contrast was constant while we varied
noise RMS contrast to control the model’s perfor-
mance (e.g., Blais et al., 2012; Smith et al., 2005). The
model calculated the Pearson correlation between the
noisy filtered stimulus and each of the filtered face
images. In a winner-take-all fashion, the model’s
categorization response was the emotion expressed by
the face image that maximally correlated with the noisy
stimulus. Model CVs, which depicted the available
information, were then generated and z scored using
the exact same procedure as for observer CVs. Even
though this model observer is very efficient, it isn’t the
ideal observer. We chose to implement this particular
model to allow direct comparison with Blais et al.
(2012) and Smith et al. (2005).

As can be seen in Figure 4 (black lines), useful
information (Zcrit ¼ 2.49, p , 0.05; two-tailed) was
exclusively concentrated on the �908 horizontal axis
for anger (Zmax¼7.6), sadness (Zmax¼9.07), disgust
(Zmax¼ 7.52), fear (Zmax¼ 8.31), happiness (Zmax¼
6.75), surprise (Zmax ¼ 7.98), neutrality (Zmax ¼
8.55), and for pooled expressions (Zmax ¼ 21.04). As
can be seen in Figure 4 (top right corners of
orientation profiles), human strategies on average
strongly correlated with the model profile (M ¼ 0.74,
SD ¼ 0.44). The only notable difference was surprise,
which negatively correlates with the available infor-
mation (r ¼�0.34).

This result is puzzling and we were thus interested
in elucidating why participants did not align them-

selves with the available information. First, we found
a considerable degree of confusion between surprise
and fear: Indeed, of all the surprise-present trials (M¼
66.5% correct responses), it was confused with fear
19.23% of the time (vs. 14.27% for the combined
remaining expressions). We next verified if and how
orientation influenced response patterns on surprise-
present trials. To answer this question, we performed
two classification vector analyses. For the first
analysis, we summed orientation sampling vectors on
surprise-present trials, using ‘‘surprise’’ (correct) and
‘‘fear’’ (incorrect) responses as weights. The result is
that horizontal information appears to have consis-
tently led to ‘‘fear’’ responses (Zmin¼�2.19, p , 0.1),
and oblique information led to ‘‘surprise’’ responses
(Zmax ¼ 3.06, p , 0.05). For the second analysis, we
summed orientation sampling vectors on surprise-
present trials, using ‘‘surprise’’ and ‘‘other’’ (i.e.,
anger, disgust, happiness, neutrality, or sadness
responses) responses as weights. Strikingly, horizontal
information appears to have led to ‘‘surprise’’ re-
sponses in this instance (Zmax ¼ 1.43, p , 0.1), but
not oblique information (Zmax¼ 1.16, p . 0.1). Thus,
it appears that subjects were able to categorize
surprise as such when using horizontal information,
but they were also highly susceptible to incorrectly
categorize the expression as fearful. Ultimately, this
results in a null correlation between horizontal
information and performance when we take into
account all surprise-present trials (Figure 4).

The case of fear is also an interesting one because
vertical information marginally correlated with perfor-
mance for human observers, but not for the model
observer. We performed a secondary analysis to remove
from correct ‘‘fear’’ responses variance that can be
explained by an overall greater disposition to simply
respond ‘‘fear,’’ irrespective of the displayed facial
expression. We did so by calculating a weighted sum of
orientation sampling vectors, similar to the procedure
described above; only this time, the weights were hits
(respond ‘‘fear’’ on fear-present trials) and false alarms
(respond ‘‘fear’’ on fear-absent trials), transformed into z
scores across the appropriate trials subset. The resulting
classification vector is illustrated in Figure 4 (top
rightmost graph, green line). As can be seen, a single peak
emerged around the�908 horizontal axis. Thus, vertical
information led to a similar probability of hits and false
alarms, consistent with the hypothesis that this infor-
mation creates a perceptual response bias toward fear.

Finally, we verified whether expression categoriza-
tion ability level could be predicted from the utilization
of horizontal information. We calculated this score by
applying a 1D Gaussian filter (FWHM¼ 208, sum equal
to 1) centered on the �908 horizontal axis of the z-
scored individual classification vectors for pooled
expressions. The Gaussian was centered on the
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horizontal axis because our model observer revealed
this to be the most information-rich orientation band,
supporting findings in the face processing literature
(e.g., Pachai, Sekuler & Bennett, 2013). The sum of
each resulting product vector was thus a weighted
averages of horizontal information utilization, giving
maximal weight to regression coefficients that fell
square on the horizontal axis, and a gradually
decreasing weight as coefficients fell further away from
this axis. We then correlated this measure of horizontal
tuning with contrast sensitivity—the reciprocal of the
contrast threshold—which is a direct measure of the
amount of information that was needed to maintain
57.14% correct responses in the task. As can be seen in
Figure 5, both measures strongly correlated, r¼ 0.64,
CI 95 ¼ [0.43, 0.8], p , 0.001. This closely parallels
previous results, which have shown that facial identi-
fication ability was linked with horizontal tuning
(Pachai, Sekuler, & Bennett, 2013).

Experiment 3: Location bubbles

The goal of Experiment 3 was to sample facial cues
using location bubbles (experiment 1 in Gosselin &
Schyns, 2001) in order to measure facial feature
diagnosticity and correlate it with orientation profiles
(as measured in Experiment 2). As already mentioned,
the blocks of Experiments 2 and 3 were interleaved
within subjects, and 50% of participants began with a
block from Experiment 3 while the other 50% began
with a block from Experiment 2. We first analyzed local
bubbles data to reveal diagnostic face regions. We then
correlated individual horizontal tuning with local
diagnosticity profiles.

Participants, apparatus, and stimuli: Same as in

Experiment 2

Procedure

The procedure was the same as Experiment 2 except
for two elements. First, instead of orientation bubbles,
face stimuli were revealed through an opaque mask
punctured by a number of randomly located Gaussian
apertures (henceforth called the ‘‘bubbles mask’’) with a
FWHM of 39.96 pixels, or 0.958 of visual angle
(examples can be seen in Figure 6; for more details, see
Gosselin & Schyns, 2001, experiment 1). Second, task
difficulty was controlled by adjusting the number of
bubbles in order to maintain the criterion performance
of 57.14%. The appropriate number of bubbles was
estimated on a trial-by-trial basis, using QUEST
(Watson & Pelli, 1983).

Figure 6. Examples of location bubbles filtered stimuli (left

column), along with the corresponding bubbles mask (right

column), as applied in Experiment 3. Image [BF01AFS] from the

KDEF recreated with the copyright holder’s permission.

Figure 5. The association between Experiment 2 image contrast

sensitivity and horizontal tuning, r ¼ 0.64, p , 0.001.
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Results and discussion

The first two experimental blocks were discarded for
the analysis. Participants needed an average of 27.16
(SD¼ 13.08) bubbles to respond correctly on 57.14% of
trials, and the average response time on correct trials
was 1,238 ms (SD¼ 261 ms). Performance (percent
correct) varied across expressions: anger (M ¼ 49.4%,
SD¼ 11.4%), sadness (M¼ 63%, SD¼ 10.4%), disgust
(M¼57.5%, SD¼12.3%), fear (M¼50%, SD¼11.3%),
happiness (M¼ 85.5%, SD¼ 7%), surprise (M¼ 58.2%,
SD¼ 13.4%), and neutrality (M¼ 62.7%, SD¼ 16.9%).
Response times (milliseconds) on correct trials also
varied considerably between expressions: anger (M ¼
1,360, SD¼ 336), sadness (M ¼ 1,278, SD ¼ 274),
disgust (M ¼ 1,353, SD¼ 281), fear (M ¼ 1,586, SD¼
416), happiness (M ¼ 878, SD¼ 207), surprise (M ¼
1,336, SD¼ 356), and neutrality (M¼ 1,172, SD¼ 292).

To uncover which facial cues more often led to
accurate responses, we performed for each subject and
each expression, the same procedure as for Experiment
2, but for bubbles masks instead of orientation
sampling vectors. The outcome of this procedure was
40 3 7 planes of 256 by 256 spatially correlated
regression coefficients (henceforth called the classifica-
tion image; Eckstein & Ahumada, 2002; Gosselin &
Schyns, 2004). These reveal the association between
image pixels and accurate categorization of the
corresponding facial expression. Classification images
were then individually z scored with the mean and
standard deviation of the null hypothesis (100 simu-
lated classification images).

To retrieve the diagnostic local information for
individual expressions, seven group classification im-
ages were obtained by first summing individually z-
scored classification images within expression and
across subjects, and then dividing the outcome by =n.
For combined expressions, a pooled expressions
classification image was created by summing the above
group classification images and dividing the outcome
by =e. A pixel test (Chauvin et al., 2005) was used to

determine the statistical threshold (Zcrit ¼ 3.4, p ,

0.05; two-tailed).
Results are shown in Figure 7, which overlays

significant regression coefficients (colored pixels, p ,

0.05) on grayscale face images. As can be seen,
different facial features are linked with the categori-
zation of the various facial expressions. For pooled
expressions, both the eyes (Zmax ¼ 6.39) and the
mouth (Zmax ¼ 10.9) significantly correlated with
performance, and the difference between the two
regions was marginally significant (Zdif ¼ 3.19, p ,

0.1). Thus, our results replicate the finding that the
mouth is overall the most diagnostic area (Blais et al.,
2012).

To benchmark the information revealed by location
bubbles, we built a model observer similar to our
orientation bubbles model observer. It was thus
subjected to the location bubbles task with essentially
the same experimental constraints as human observers
(for details, see Blais et al., 2012; Smith et al., 2005). On
each trial, a bubbles mask was created and applied to
the stimulus and each of the possible 70 face images.
Instead of modulating the number of bubbles, we
modulated the proportion of Gaussian white noise,
estimated with QUEST (Watson & Pelli, 1983) that was
added to the masked stimulus. The model calculated
the Pearson correlation between the noisy filtered
stimulus and each of the filtered face images. The
model’s response was the emotion expressed by the face
image that maximally correlated with the noisy masked
stimulus. Model classification images depicting the
available information were then generated and z scored
using the exact same procedure as for observer
classification images. Usable facial information varied
across expressions and, on average, the Pearson
correlation between human and model observer profiles
was strong (M ¼ 0.72, SD ¼ 0.11). For pooled
expressions, available information was concentrated
around the eyes (Zmax¼ 8.17) and the mouth (Zmax¼
9.48), and the difference between the two was
nonsignificant (Zdif ¼ 0.93).

Figure 7. Experiment 3 group classification images. Areas depicted in color significantly correlated with task performance, Zcrit¼ 3.4,

p , 0.05. Images [BF01AFS - BF01ANS - BF01DIS - BF01HAS - BF01NES - BF01SAS - BF01SUS] from the KDEF recreated with the

copyright holder’s permission.
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Before investigating the link between the utilization
of local information and of the orientation spectrum,
we first looked at the link between our two task
performance metrics—see Royer, Blais, Gosselin,
Duncan, and Fiset (2015) for evidence showing that the
amount of information revealed by bubbles is a good
predictor of face processing abilities. As can be seen in
Figure 8, individual differences in contrast sensitivity
(Experiment 2) strongly correlated with differences in
the number of bubbles (Experiment 3), r ¼�0.71, CI
95¼ [�0.84, �0.51], p , 0.001. This suggests that our
two task manipulations tapped into a common
perceptual mechanism for categorizing facial expres-
sions. We thereafter looked at the correlation between
utilization of orientation and of facial features.

To look at the link between horizontal tuning and
utilization of facial features, we performed a multiple
linear regression analysis of facial feature diagnosticity
(independent variable) on horizontal tuning as described
in Experiment 2 (dependent variable). For facial
features, diagnosticity scores were defined as the
maximum z-scored regression coefficient that fell within
a region of interest (ROI) of the smooth classification
images. These were extracted for each subject in the six
following discrete ROIs (illustrated in Figure 9): the
eyebrow junction, eyebrows, eyes, nose, nasolabial folds,
and the mouth. We obtained a significant equation, F(6,
33)¼ 3.36, p , 0.05, with an R2 equal to 0.38.
Interestingly, the eye region was the only significant
predictor in this equation, t(39)¼ 3.8, p , 0.01 (all other
features, p . 0.2). More specifically, the correlation
between eye diagnosticity and utilization of horizontal
information was r¼ .54, CI 95¼ [0.27, 0.73], p , 0.001.
Thus, it globally appears that individual differences in
utilization of horizontal information is intimately linked
with differences in utilization of the eye region.

General discussion

Our first objective with the present work was to
explore the role played by the orientation spectrum in
the categorization of the six basic facial expressions and
of neutrality. We have developed orientation bubbles,
which allow the extraction of precise orientation
profiles, and validated the procedure in Experiment 1
using a simple plaid detection task. We thereafter
proceeded in exploring the role of orientations in the
categorization of facial expressions.

Previous work had already demonstrated that
horizontal information plays a crucial role in the
categorization of happy and sad facial expressions by
contrasting performance with horizontal and vertical
information (Balas & Huynh, 2015; Huynh & Balas,
2014). In Experiment 2, we have addressed two
limitations of this work, applying orientation bubbles
to all the basic facial expressions and neutrality.
Overall, we found a strong link between horizontal
information and the successful categorization neutral-
ity and the basic expressions—except surprise. Our
results thus replicated findings pertaining to the
recognition of happy and sad expressions (Balas &
Huynh, 2015; Huynh & Balas, 2014), and also
expanded upon those by uncovering the link between
horizontal information and other expressions. Addi-
tionally, we found antidiagnostic—oblique-to-verti-
cal—orientations for a handful of expressions. This
means that some information, if relied too much upon
by the visual system, systematically leads to incorrect
categorization responses.

Pearson correlations between human and model—
horizontally-tuned—profiles were on average quite
strong for individual and pooled expressions. The only
exception was surprise, for which the human strategy
instead rested on information in the oblique-vertical
axes, and this strategy negatively correlated with the
model strategy. The results of our secondary analyses
suggest that this is not because participants were
incapable of using horizontal information to categorize

Figure 8. The association between image contrast sensitivity

(Experiment 2) and the number of bubbles (Experiment 3), r¼
�0.71, p , 0.001.

Figure 9. Color coded regions of interest (ROI) used in the

multiple linear regression analysis—comparing orientation and

local diagnostic profiles—are overlaid on a grayscale picture of a

face. Red ¼ eyes; orange¼ eyebrows; yellow ¼ eyebrow

junction; green¼nose; blue¼ nasolabial folds; purple¼mouth.

Image [BF01AFS] from the KDEF recreated with the copyright

holder’s permission.
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surprise. Instead, they suggest that, on surprise-present
trials, horizontal information systematically led to
‘‘fear’’ responses. In other words, had we not included
fear among our expression categories, it is possible that
subjects would have shown successful utilization of
horizontal information to categorize surprise. We can
only speculate as to why fear caused this to happen.
One possibility is that surprise, as revealed through a
horizontal filter, might be harder to dissociate from
internal representations of fear. By revealing surprise
through its diagnostic oblique-vertical band on the
other hand, the rounded open mouth that is typical of
this expression becomes more evident. Furthermore,
when other expressions are revealed through surprise’s
diagnostic orientation bands, the teeth and nasolabial
folds—which are not typically associated with sur-
prise—emerge from the picture. Thus, it might be easier
to untangle surprise from other internal representations
when an expression is revealed through these oblique-
vertical bands, even if this strategy is not well tuned to
the available information—as revealed by the model
observer.

Our second objective was to provide the first
empirical investigation of the link between the utiliza-
tion of the orientation spectrum and of local facial
features. Experiments 2 and 3 were designed with this
specific goal in mind. Orientation and location bubbles
blocks were interleaved within subjects, such that we
could analyze the data from the two tasks using an
individual differences approach. We found that indi-
vidual differences in task performance metrics, contrast
sensitivity (Experiment 2) and number of bubbles
(Experiment 3), strongly correlated. We also found that
individual differences in utilization of horizontal
information were best predicted by eye diagnosticity
alone. No other feature was associated with these
variables—not even the mouth.

At first, this result might perhaps seem surprising,
given the importance of the mouth for human observers
carrying this task (Blais et al., 2012; Calvo, Fernández-
Martı́n, & Nummenmaa 2014). Our location bubbles
model observer, however, revealed that the eyes and the
mouth convey information in about the same propor-
tions, replicating previous results (Blais et al., 2012).
Furthermore, as already mentioned, our orientation
bubbles model observer revealed horizontal information
to carry the most information for categorizing all the
basic facial expressions. Thus, individuals who made
better use of horizontal information used a strategy that
was de facto better aligned with the available informa-
tion, suggesting that they were in fact more efficient. A
possible explanation of our results is thus that this
increase in horizontal processing was reflected by an
increase in eye processing—the mouth being used by all
observers irrespective of horizontal tuning.

More specifically, the mechanism for this could lie in
the processing of horizontal information in mid-to-high
spatial frequencies. Indeed, recent findings indicate that
the horizontal tuning of face processing mechanisms is
best supported by this frequency range (Goffaux, van
Zon, & Schiltz, 2011). Moreover, a study comparing
Gabor filter responses to hundreds of pictures of
human faces found that the eyes specifically contain
more horizontal energy in these spatial frequencies
(Keil, 2009).

Our results, along with those of Pachai and
colleagues (2013), have shown that individual ability
levels in face identification and expression categoriza-
tion are well predicted by horizontal tuning. Thus, it
could be that the information pertinent to these tasks is
processed by a common cerebral region. For instance,
recent findings suggest that overlap between face
identification and facial expression recognition might
occur in regions such as the fusiform gyrus and the
functionally defined fusiform face area (FFA; Kan-
wisher et al., 1997; see also, for review, Duchaine &
Yovel, 2015). The FFA was shown to respond equally
strongly to emotional and neutral faces (e.g., Winston,
Vuilleumier, & Dolan, 2003), and evidence suggests
that the FFA responds reliably to the eye region—and
also to the mouth region—in faces expressing fear
(Smith et al., 2008). Furthermore, the FFA was found
to be the only region—among the primary visual cortex
and the occipital face area—that responds selectively to
the horizontal information of faces (Goffaux et al.,
2016). Thus, the FFA could subtend the diagnosticity
of horizontal information and of local features, for
both facial identity and expressions.

Relatedly, the N170 (see, for review, Eimer, 2011;
Rossion, 2014), which is suggested to emerge from FFA
activity (Sadeh et al., 2010), also appears to be sensitive
to horizontal facial information (Jacques, Schiltz, &
Goffaux, 2014). Additionally, this component has been
likened to an eye detector (Rousselet, Ince, van
Rijsbergen, & Schyns, 2014; Schyns, Jentzsch, Johnson,
Schweinberger, & Gosselin, 2003; Smith, Gosselin, &
Schyns, 2004), and to a diagnostic information integra-
tor for facial expressions (Schyns, Petro, & Smith, 2007).
By showing the link between horizontal tuning and eye
utilization, our results could potentially help bridge the
gap, supporting the notion that these findings might be
different sides of a same coin.

Keywords: bubbles, facial expressions, face
perception, orientation tuning, individual differences
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