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Time Course of Cultural Differences 
in Spatial Frequency Use for Face 
Identification
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 Ye Zhang3,4, Dan Sun3,4 & Caroline Blais1

Several previous studies of eye movements have put forward that, during face recognition, Easterners 
spread their attention across a greater part of their visual field than Westerners. Recently, we found that 
culture’s effect on the perception of faces reaches mechanisms deeper than eye movements, therefore 
affecting the very nature of information sampled by the visual system: that is, Westerners globally rely 
more than Easterners on fine-grained visual information (i.e. high spatial frequencies; SFs), whereas 
Easterners rely more on coarse-grained visual information (i.e. low SFs). These findings suggest that 
culture influences basic visual processes; however, the temporal onset and dynamics of these culture-
specific perceptual differences are still unknown. Here, we investigate the time course of SF use in 
Western Caucasian (Canadian) and East Asian (Chinese) observers during a face identification task. 
Firstly, our results confirm that Easterners use relatively lower SFs than Westerners, while the latter 
use relatively higher SFs. More importantly, our results indicate that these differences arise as early as 
34 ms after stimulus onset, and remain stable through time. Our research supports the hypothesis that 
Westerners and Easterners initially rely on different types of visual information during face processing.

Perception is the process through which sensory information is organized, categorized and interpreted so as to 
create a meaningful subjective representation of the outside world. In this sense, perception can be viewed as 
an inferential process through which sensory input is associated to signification: for long, it has been a widely 
accepted theory that visual perception involves “unconscious inferences” – i.e. automatic assumptions about the 
way physical stimuli should appear – based on one’s memories, expectations and attention (see e.g. ref.1), and gen-
erally, that world knowledge is central to how humans process visual information2. That said, the way knowledge 
about the world is acquired can vary from one culture to another, along with the type of implicit rules that lead 
to meaningful inferences about visual sensation (see e.g. refs.3,4). These culturally circumscribed implicit rules 
are essential to understand how visual information is coded and associated to stored knowledge. Nonetheless, 
theories on how visual information is represented and processed have, for decades, rested solely on empirical data 
from Western, educated, industrialized, rich and democratic (WEIRD) societies5, and thus, cannot necessarily be 
generalized to other populations.

As a response, cross-cultural perspectives on human perception have gained increasing interest since the 
20th century. For instance, ongoing research has been investigating the influence of culture on the processing of 
information contained in visual stimuli, and exposed striking differences in the way Western and Eastern cultures 
allocate their attention across their field of vision6–9. As a matter of fact, culture seems to impact visual processes 
as basic as spatial frequency (SF) information extraction10 during face recognition11. Although the effects of cul-
ture on perception target such elementary mechanisms, it is still quite unclear at what point during the course of 
visual information processing these differences between Westerners and Easterners arise, and in what way they 
unfold to create a visual representation of the world. Therefore, the aim of the present study is to measure the time 
course of cultural differences during the processing of information from facial stimuli. Studying the onset time 
of these cultural differences will allow us to get a better grasp of the extent to which the effect of culture on visual 
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processes is etched, whereas the investigation into the time course of this effect can enlighten us on how visual 
information, encoded in SFs, is added up to form a meaningful image of one’s respective cultural environment.

One of the dominant hypotheses in the literature pertaining to these cultural differences in perception argues 
that Easterners attend more “holistically” to their visual world than Westerners, whereas Westerners attend more 
“analytically” to their visual world than Easterners4,6. Indeed, evidence gathered from various experimental para-
digms has led to this hypothesis6. First, Easterners achieve lower accuracy rates than Westerners in simple visual 
tasks where participants are asked to inhibit contextual information12,13. For instance, this tendency is observed 
when participants are asked to judge the absolute orientation of a line placed in a frame that rotates independently 
(i.e. judge its orientation regardless of the frame’s presence; the Rod-and-Frame test14), or draw a line inside a 
square as to match the absolute size (i.e. its size regardless of the square’s presence) of another line featured in 
a square that differs in size (i.e. the Framed-Line test). Moreover, during a change-detection task featuring four 
uniquely colored squares, Easterners are better than Westerners at detecting changes in the periphery, but worse 
at detecting changes in the central visual field8, which corroborates the propensity of Easterners to attend more to 
the periphery of their visual field than Westerners.

Second, Easterners’ tendency to process the context more than Westerners has also been observed during the 
processing of more complex visual scenes. For instance, East Asian participants are more influenced, compared 
to Western Caucasian participants, by the expression of surrounding faces when asked to judge the intensity of 
a central figure’s facial expression7,15, and have more difficulty than Westerners recalling whether they previ-
ously viewed an object if it is presented to them on a different background than the one on which they had first 
seen it16,17. These findings have supported the assumption that Easterners integrate the focal object along with 
its background during memory encoding, whereas Westerners encode the focal object independently from its 
background.

Cross-cultural research on the visual processing of faces has unfolded in a way that ties in with the observed 
cultural differences in attention distribution. Specifically, during learning and recognition, Easterners allocate less 
fixations to the eyes and mouth than Westerners, and instead direct more fixations near the center of a face than 
the latter group18. Many studies have henceforth replicated these findings using faces as well as other homogene-
ous object categories – i.e. classes of stimuli that possess a generally uniform shape19–23. Some data also highlights 
that Easterners’ aforementioned eye movement pattern persists despite both cultures attending to and using the 
same facial areas – the eyes and mouth – to recognize faces19. This finding was interpreted as support to the idea 
that Easterners’ tendency to fixate more than Westerners the central area of a face reflects a greater attentional 
diffusion to reach the facial areas required to perform the task. Consequently, Easterners’ ability to process the 
important facial features in peripheral vision might explain why they spend less time than Westerners directly 
fixating those features.

Nevertheless, eye movements are quite slow in comparison with the time needed to recognize a face, and the 
degree to which one can rely on this measure to make inferences regarding the cognitive processes underlying 
face recognition is debatable. As a matter of fact, a study by Or, Peterson and Eckstein24 has revealed that the ini-
tial fixations during face recognition, i.e. those that are actually necessary for face recognition25, land on the same 
facial area for Easterners and Westerners, thus challenging the hypothesis that culture influences the attentional 
and visual mechanisms underlying face recognition per se. Instead, the authors proposed that the cultural differ-
ences observed in the eye fixation patterns reflect cultural norms that take place later during the stimulus pro-
cessing. However, an important part of the visual information essential to recognition can be acquired through 
extrafoveal processing, which can happen during the first fixation26. In this sense, later eye movements can be 
relevant to delineate the patterns of covert visual attention initially deployed. Thus, even though Westerners and 
Easterners direct their first fixations towards identical facial regions during the recognition of a face, the way 
they originally respectively spread their extrafoveal attention across the face might differ, and be reflected in their 
subsequent eye movement patterns.

More recently, we have shown that the impact of culture on face processing goes deeper than the differences 
revealed in eye movement patterns, and can indeed be observed in the nature of the visual information extracted 
by both cultures, namely the SFs they use11. In fact, in light of evidence suggesting that a broader allocation of 
attention facilitates low SF information processing, while hindering the processing of higher SFs27–29, we directly 
compared the SF tunings of Westerners and Easterners during two face processing tasks and found a clear cultural 
difference in the use of SFs, to wit that Easterners relied on lower SFs, and Westerners relied on higher SFs to cor-
rectly identify a face. These results offer a strong support to the hypothesis that both cultural groups spread their 
attention differently over a face, and suggest that culture impacts on relatively early visual mechanisms.

Although our previous study highlighted a strong cultural effect on the SFs that are ultimately more useful for 
facial recognition, this does not enable us to know when and how this cultural effect occurs. Notwithstanding the 
need for neurological data to further understand when and how lower and higher level perceptual mechanisms 
interact in the course of visual information processing, analyzing the variations along the time course of SF 
extraction makes it possible to get a sense of the earliness of the cultural impact on visual information sampling. 
More specifically, the onset time of the cultural differences can enlighten us on the extent to which the effect of 
culture on facial perception is engrained, whereas cultural differences in the time course itself can inform us on 
the way SFs are integrated across cultures during face identification.

With respect to the onset, an immediate cultural effect on SF extraction could suggest the presence of an 
early, perhaps overreaching, cultural bias for a specific set of SFs, whereas later cultural differences would suggest 
that both cultures’ visual systems seem to initially operate in a similar way, and that later processes might be 
involved in the observed cultural differences. In fact, eye movement studies found similar initial gaze positions 
– near the center of the face – for Westerners and Easterners during face recognition24,30, but diverging fixation 
patterns throughout longer periods of stimulus observation18–23, which seems consistent with a later onset of 
cultural differences. However, as we previously mentioned, eye movements cannot inform us in real-time about 
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the information that is actually used by an observer, but can only do so at a later time, insofar as they follow prior 
related attentional strategies. Thus, if Westerners and Easterners deploy their attention differently during those 
first fixations, it is also possible that the onset of the cultural effect on SF sampling would be immediate, despite 
similar initial gaze positions, and thus precede the observed cultural differences in eye movements. In this sense, 
measuring the onset time of the effect of culture on SF sampling can contribute to further understand the link 
between the observed cultural differences in eye movements and SF extraction. Indeed, the current available data 
is insufficient to clarify whether the type of visual information sampled is determined by the different eye move-
ment patterns or the opposite.

Regarding the time course, on one hand, if Westerners and Easterners initially use the same SFs, and only 
later exhibit differences in their use of SFs, this could highlight cultural differences in how facial information 
is integrated. On the other hand, the SF sampling pattern of Easterners may be globally proportional to that of 
Westerners, but in comparison, consist in the extraction of altogether lower SFs. In this case, the cultural differ-
ences should be consistent through time, and highlight similarities in how both cultures integrate information 
during a face processing task. By specifically investigating the time course of the cultural differences in SF utili-
zation, this study allows us to untangle these possibilities and acquire more accurate knowledge pertaining to the 
moment at which culture starts shaping the nature of the visual information sampled during facial recognition 
and the manner in which this phenomenon unfolds.

Evidence that cultural differences emerge quite early during visual processing of a stimulus has been obtained 
in a few other studies. For instance, the formerly cited study by Boduroglu, Shah, and Nisbett8 highlights diver-
gences in how Easterners and Westerners allocate their attention during a change-detection task while the 
stimulus display time was limited to 150 ms, hence corroborating the hypothesis that, compared to Westerners, 
Easterners’ attention is dispersed across a broader area of the visual space quite early during the processing of a 
display. Furthermore, Lao, Vizioli and Caldara31 measured Westerners’ and Easterners’ attentional sensitivity to 
global or local visual characteristics, and tried to pinpoint the onset time of the corresponding neural activity. 
They found that for Easterners, but not Westerners, greater repetition suppression – a measure of neural adapta-
tion to redundant information – on the attention-sensitive P1 event-related potential (ERP) occurred for repeated 
information at the global level compared to recurrent local information, as soon as 80 ms after stimulus onset. 
Thus, this study reveals evidence for an early attentional bias in Easterners toward the global visual features of 
Navon hierarchical stimuli, as shown by an attention-responsive ERP.

Notwithstanding the foregoing evidence of Easterners’ early attentional bias toward visual information span-
ning over a wide visual range, as opposed to Westerners, the experimental paradigms used by previous studies 
were not devised to measure the temporal unfolding of corresponding differences in the use of visual information. 
In this vein, the method that was used in the present study was specifically implemented to reveal subtle changes 
in the time course of visual information extraction. This method, thus, makes it possible to reveal with heightened 
precision how early culture starts to shape the nature of the visual information sampled during the processing of a 
stimulus. Furthermore, this study is the first to investigate the earliness and time course of cultural differences in 
SF use during the recognition of faces, which will contribute to bridge the aforementioned gap between eye move-
ments, attention and visual information extraction.

Along these lines, the present study measures the time course of the cultural differences in SF utilization 
during face identification by applying a SF filtering method specifically designed for this purpose. Our current 
method is based on the Bubbles method32, specifically on its more recent version focused on SF sampling (i.e. 
SF Bubbles, namely used in Tardif et al.11, as well as in several previous studies – see refs33–39). This category of 
methods is designed to isolate parts of all the information contained in a visual stimulus, e.g. local image features, 
SFs, or orientations (see ref.40), in order to understand the relative importance of each piece of information for 
efficient visual processing.

With this in mind, the SF filtering technique used in the current study consists in randomly sampling, on 
each trial, a subset of the SFs that compose an image – here, faces – and vary this subset through time, within 
one trial (see Fig. 1 for a stimulus example; see the Methods section for more details on the stimuli creation pro-
cedure). This allows to measure a participant’s ability to recognize a face containing only the selected SFs at each 
trial. Since ranges of SFs are more or less likely to be extracted and used by participants at specific time points 
in the course of visual processing, if the SFs useful for a participant to perform the task are sampled at the right 
moments, the participant is more likely to respond accurately, and if they are not, the participant is less likely to 
respond accurately. This method not only allows to assess which SFs are useful for face recognition, but will also 
give insight on the temporal dynamics of the SFs use as well as the onset of the cultural differences in the use of 
SFs during the processing of faces.

Results
Behavioral performance. First, participants’ accuracy level was entered into a mixed ANOVA with the 
between-subject factor participants’ culture and within-subject factor stimulus ethnicity. Overall, Canadian par-
ticipants reached a higher accuracy level (M = 70.29%; SD = 5.57%) than Chinese participants (M = 58.71%, 
SD = 7.67%), [F(1,43) = 32.634; p < 0.001; ηp

2 = 0.431]. No significant effect of face ethnicity was found 
[F(1,43) = 0.859; p = 0.359; ηp

2 = 0.020], indicating that the stimuli were of comparable difficulty across face eth-
nicity. However, a significant interaction between participants’ culture and the stimuli’s ethnicity was observed 
[F(1,43) = 8.707; p = 0.005; ηp

2 = 0.168]. Post hoc t-tests highlight that Canadian participants obtained a signifi-
cantly higher average accuracy rate with Western Caucasian faces (M = 72.18%; SD = 6.68%) compared to East 
Asian faces (M = 68.41%; SD = 6.01%), [t(21) = 3.259; p = 0.004; Cohen’s d = 0.593; 95% CI: 1.36%, 6.17%], 
whereas Chinese participants obtained similar average accuracies (M = 57.73%; SD = 9.02% for Western 
Caucasian faces, M = 59.69%; SD = 7.99% for East Asian faces) across face ethnicities [t(22) = −1.272; p = 0.216; 
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Cohen’s d = 0.230; 95% CI: −5.17%, 1.24%]. An equal performance for Chinese participants for both face ethnic-
ities was also obtained in Tardif et al.11. Interestingly, other studies have also revealed a greater same-race bias for 
Western Caucasian observers compared to East Asian observers (e.g. see refs41–43). It is also important to note that 
the identities chosen for each face ethnicity category were objectively equalized in recognition difficulty prior to 
testing, using an ideal observer.

In light of the significant difference in accuracy rates between Canadian and Chinese participants, another 
mixed ANOVA with the same between and within-subject factors was conducted to verify if there was any differ-
ence in the time participants spent practicing with unaltered faces before reaching the main testing phase, during 
which the dynamic SF filtering was then applied. The analysis revealed no significant main effect of participants’ 
culture [F(1,40) = 1.299; p = 0.261; ηp

2 = 0.031] or stimulus ethnicity [F(1,40) = 3.246; p = 0.079; ηp
2 = 0.075] on 

the number of practice blocks participants needed to achieve threshold performance in order to start the main 
task, i.e. a 92% accuracy rate for at least two consecutive blocks with both stimulus ethnicities (Canadian partici-
pants: M = 1.11 blocks; SD = 0.32 blocks for Western Caucasian faces, M = 1.58 blocks; SD = 0.96 blocks for East 
Asian faces; Chinese participants: M = 1.48 blocks; SD = 0.85 blocks for Western Caucasian faces, M = 1.78 
blocks; SD = 1.62 blocks for East Asian faces). The interaction between the two factors did not reach significance 
either [F(1,40) = 0.154; p = 0.697; ηp

2 = 0.004].
The number of bubbles was also analyzed because, as described in the Methods section, it was adjusted at 

different points throughout the experiment to maintain the accuracy close to a predetermined criterion level; it 
therefore indexes the amount of information needed, on each trial, by participants to perform the task. Firstly, we 
focused on the number of bubbles used during the main (third) task. That number was set equally for both face 
ethnicities based on the final number of bubbles participants reached with other-race faces during the second 
task. As is mentioned in the Procedure section, the final number of bubbles rested on the results with other-race 
faces because participants were generally worse with those faces. This decision was meant to avoid participants 
performing at the level of chance with other-race faces. Here, we wanted to verify if the number of bubbles was 
comparable for Canadian and Chinese participants during the main face identification task, in order to ascer-
tain that this factor did not affect the cultural differences in SF use we might find. An independent sample t-test 
revealed no significant difference between the average number of bubbles that was used in the main task for 
Canadian (M = 642.031; SD = 181.269) and Chinese (M = 620.037; SD = 178.680) participants [t(43) = 0.410; 
p = 0.684; Cohen’s d = 0.122; 95% CI: −86.229, 130.217].

In addition, we entered the number of bubbles that participants needed throughout the second task into a 
mixed ANOVA with the between-subject factor participants’ culture and within-subject factor stimulus ethnicity. 
This allowed us to measured the average number of bubbles participants initially needed with each face ethnicity 
to reach the performance threshold, before a stable number of bubbles to use in the main task, was determined. 
No significant main effect of participants’ culture was revealed [F(1,43) = 0.635; p = 0.430; ηp

2 = 0.015], albeit a 
main effect of stimulus ethnicity was significant [F(1,43) = 5.689; p = 0.022; ηp

2 = 0.117]. However, a significant 
interaction between participants’ culture and the ethnicity of the stimuli was also revealed [F(1,43) = 15.760; 
p < 0.001; ηp

2 = 0.268]. Post hoc t-tests indicate that Canadian participants needed significantly more information 
to recognize East Asian faces (M = 716.581; SD = 169.432), than to recognize Western Caucasian faces 
(M = 600.893; SD = 169.045) [t(21) = −3.829; p = 0.001; Cohen’s d = 0.684; 95% CI: −178.522, −52.854], but 
Chinese participants require a statistically similar amount of information to recognize both East Asian 
(M = 605.574; SD = 180.726) and Western Caucasian faces (M = 634.422; SD = 176.332) [t(22) = 1.386; p = 0.180; 
Cohen’s d = 0.162; 95% CI: −14.314, 72.011].

Figure 1. Example of a sequence of the SFs sampled across time, with the resulting image, for one trial. In order 
to save space, only a subset of the 18 frames were selected for display.
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Spatial frequency × time classification images. The time course of SF utilization was analyzed by 
producing classification images; they indicate how strongly the participant’s utilization of each SF at each time 
frame is associated with accuracy (see the Methods section for more details on the computation of the classifi-
cation images). Classification images representing the time course of SF utilization were produced separately 
for East Asian and Western Caucasian faces. Group classification images representing the time course of SF uti-
lization without regard to the stimulus ethnicity were also produced. Note that analyzing group classification 
images rather than individual ones is a common practice when using Bubbles (see e.g. refs33,44–46); it is one way of 
reducing the noise inherent to random sampling procedures, as it increases the overall number of trials included 
in the analysis. Indeed, to be able to identify a meaningful pattern with this method, whether it supports or not 
the testing hypothesis, a large number of trials is needed to discover a signal (i.e. some regularity) through the 
trial-by-trial random combinations. Alternatively, it is possible to compute meaningful individual classification 
images if each individual performs a very large number of trials. This can be useful if individual differences 
are expected. By comparison, group classification images are typically performed when individuals from that 
group are expected to be part of the same population, which is the case in the present study on cultural group 
differences.

To reveal the SF × time information extraction that was significantly associated with accuracy, the Cluster test 
from the Stat4CI toolbox (p < 0.05; FWHM = 4.47; Zcrit = 3.0)47 was applied to each cultural group’s classification 
images. This test is based on the random fields theory and corrects for multiple comparisons (i.e. one test per SF 
and time frame) by controlling for the family-wise error rate, while taking into account the fact that contiguous 
SFs and time frames are not independent (i.e. at a functional level). The significant clusters are represented in 
colours other than dark blue on Fig. 2. To uncover statistically significant cultural differences, Chinese group 
classification images were subtracted from Canadian group classification images, and Cluster tests were applied 
to these differential classification images (p < 0.025; FWHM = 4.47; Zcrit = 3.0). The clusters representing signif-
icant cultural differences are delineated in red on Fig. 2.

The results reveal significant cultural differences akin to those that were found previously11. In order to sim-
plify the description of these differences across time, the mean lower and higher bounds of SF utilization were 
derived for each SF × time cluster; however, the lower and higher bounds of SF utilization on each frame sepa-
rately are available on Fig. 2. When both face ethnicities are considered together (i.e. Fig. 2, last column), results 
show that, between 50 and 133 ms of stimulus presentation, Chinese participants benefit significantly more than 
Canadian participants from lower SFs between 4.8 and 7.3 cycles per face (cpf) to correctly identify faces. In 
contrast, as early as 34 ms following stimulus onset and for the next 184 ms of stimulus presentation, Canadian 
participants benefit significantly more than Chinese participants from higher SFs between 16.2 and 60.1 cpf.

Upon analyzing face ethnicity-specific cultural differences (i.e. Fig. 2, first and second columns), the results 
indicate that Canadian participants make a much greater use than Chinese participants of SFs ranging from 16.7 
to 41.5 cpf, as soon as the stimulus appears and for a steady 200 ms, for the identification of Western Caucasian 
faces. Their high SF bias arises much later and more briefly for East Asian faces (from 18.5 to 32.3 cpf, between 
200 and 220 ms), although a trend towards a similar bias can be observed earlier in time; in fact, SFs that fall 
within the significant cluster revealed for Canadian participants when both face ethnicities are combined (i.e. 

Figure 2. Classification images illustrating Canadian and Chinese observers’ significant use of spatial 
frequencies across time, for Western Caucasian faces, East Asian faces and both face ethnicities combined. 
Group differences (i.e. Canadian observers - Chinese observers) are marked for each group and stimulus 
category: red edges delineate significant SF use biases for each cultural group.



www.nature.com/scientificreports/

6SCIeNtIfIC RepoRts |  (2018) 8:1816  | DOI:10.1038/s41598-018-19971-1

from 16.2 to 60.1 cpf, between 34 and 217 ms) are also relatively more useful for this group to identify East Asian 
faces (average Z score of 1.48). For Chinese participants, a low SF bias between 3.6 and 5.5 cpf, starting at 67 ms 
and ending at 267 ms is significantly present for East Asian faces. There was also a trend in the same direction for 
Western Caucasian faces for SFs that fall within the significant cluster revealed when face ethnicities were com-
bined (i.e. from 4.8 to 7.3 cpf, between 50 and 133 ms; average Z score of −2.32). It is also interesting to note that 
our Canadian participants start making greater use than our Chinese participants of lower SFs ranging from 3.3 
to 7.6 cpf later during the course of information extraction (between 184 and 250 ms); this low SF bias is signifi-
cant only with own-race faces, although there is a trend in the same direction with other-race faces, for SFs that 
fall within the corresponding cluster of significant low SFs when both face ethnicities were combined (from 6.9 to 
9.1 cpf, between 200 and 250 ms; average Z score of 1.45).

While this does not jeopardize the validity of the main results, it is worth noting that the sampling method 
makes it difficult to draw conclusions regarding the upper bounds of the SF ranges used by participants. Indeed, 
the application of a logarithmic SF sampling technique impacts on the resolution that we may expect in the 
results. More specifically, the higher the sampled SF, the broader the range of surrounding SFs included in the 
filter. As explained in the Methods section, the decision to use a logarithmic sampling stems from our knowl-
edge of the visual system’s relative sensitivity to SFs; that is, retinal cells which are sensitive to high SFs tend to 
react to a broader range of SFs than cells which are sensitive to low SFs10. Thus, although extremely high SFs are 
included in the significant clusters of information utilization, it is unlikely that they were actually beneficial to the 
participants. Rather, they likely are an artifact of the lower resolution of the method with high SFs. An analysis 
aiming at examining in greater detail the relationship between the sampled SF and the resolution is provided 
as Supplementary Information. That analysis suggests that the presence of extremely high SFs in the significant 
clusters likely reflects that SFs at least as high as 22 cpf were beneficial to the participants. However, because of the 
lower resolution with high SFs, it is not possible to know the upper bound of the SFs extracted.

In addition, for the purpose of investigating whether or not our results can be found across a majority of 
individual participants, we conducted a bootstrap analysis in which participants are randomly sampled (with 
replacement) to form new samples including overall the same number of subject data. This procedure allows to 
verify if our results can be found across a majority of random samples of participants, in which the data of any 
individual participant has varying degrees of weight. We resampled our participants 1000 times and verified if 
the previously revealed cultural group differences could be found in at least 95% of cases. As a matter of fact, our 
bootstrap analysis confirms that all but one significant cluster revealed in our main analysis were observed with a 
95% confidence interval. Indeed, only the low SF cluster previously found for our Chinese participants when both 
face ethnicities were combined did not reach the 95% threshold. However, a trend was present for 90% of the sam-
ples. This highlights, nonetheless, a greater heterogeneity of processing strategies among Chinese participants, 
especially with other race faces (see detailed results and figures for this analysis in Supplementary Information).

Spatial frequency tuning across time. In order to get a better grasp of the time course of SF utiliza-
tion for both cultures, a second analysis was conducted to verify how the peaks of SF tuning unfolded through 
time. The participants’ individual SF tuning peaks were calculated at each time-point using the 50% Area Spatial 
Frequency Measure (ASFM; see ref.37). The ASFM method works by finding the SF point that separates the surface 
underneath the SF tuning curve (i.e the curve representing how strongly each SFs is associated with accuracy) and 
over the significance threshold in two equal parts. This measure aims to reveal the SF value that approximately 
characterizes an observer’s SF use preferences, by considering both the highest point (i.e. the largest SF value) and 
the width (i.e. the SF range) of the curve. As the Z score values constituting the individual classification images 
are overall lower than the values that make up the group classification images, the significance threshold applied 
here was half of the threshold used for the Cluster test on the group classification images (i.e. Zcrit = 1.5). For the 
frames that contained no values that met the threshold, the raw maximum value was used. Furthermore, since 
the smoothing procedure across time makes it so that a SF sample is present during approximately three time 
frames (see the Methods section, as well as the Supplementary Information, for more details), the individual tuning 
peaks were calculated for six time-points each comprised of an average of three consecutive time frames. This 
decision also allowed to reduce the number of comparisons needed for the within-subject factor time frames of 
the postliminary analysis of variance. Figure 3 displays the unfolding of SF tuning peaks through time.

Thus, a 2 × 2 × 6 mixed ANOVA, with participants’ culture as a between-subject factor, and face ethnicity and 
time frames as within-subject factors, was performed on the individual peaks. The main effect of culture was 
significant [F(1,43) = 4.639; p = 0.037; ηp

2 = 0.097], meaning that Canadian participants had higher tuning peaks 
(all frames (cpf): M = 19.9; SD = 15.1 for Western Caucasian faces, M = 20.4; SD = 14.3 for East Asian faces) than 
Chinese participants (all frames (cpf): M = 14.6; SD = 11.5 for Western Caucasian faces, M = 18.8; SD = 15.2 for 
East Asian faces). This result replicates the group differences found in the classification images and discussed in 
the precedent section. It supports the idea that the differences observed in the group classification images reflect 
the strategy of the whole group rather than the one of just a few unrepresentative individuals. Neither a significant 
effect of time [F(1,43) = 0.378; p = 0.775; ηp

2 = 0.009], of face ethnicity [F(1,43) = 1.939; p = 0.171; ηp
2 = 0.043], 

nor a significant interaction between factors was found.

Analyses with accuracy as factor. Finally, in order to rule out the possibility that our results might be 
driven by the accuracy differences between the two cultural groups, we performed once again all the previous anal-
yses while controlling for participants’ accuracy. This exact procedure was also done in our first study on how cul-
ture influences SF use11. Firstly, no significant correlation between ASFM peaks and accuracy was found (Canadian 
participants: r = 0.1; p = 0.658, Chinese participants: r = 0.105; p = 0.633). The average ASFM peaks across time 
frames were used here, since our initial analysis on SF tuning peaks did not reveal a significant effect of time.
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Then, we matched subgroups of participants on the basis of accuracy rate (12 Canadian participants: 
M = 66.67%; SD = 4.75%, 12 Chinese participants: M = 64.67%; SD = 3.65%, t (22) = 1.156; p = 0.26), chosen 
according to the same criteria as our previous study11: (a) to include as many participants as possible, and (b) to 
minimize the difference in accuracy rates.

Results on group classification images were similar to the ones found in our initial analysis (results are illus-
trated in Fig. S3, provided in the Supplementary Information file). Overall, between 34 and 150 ms of stimulus 
presentation, Chinese participants make better use than Canadian participants of SFs between 4.8 and 8.2 cpf. 
This low SF bias for Chinese participants is present with East Asian faces (from 3.3 and 8.7 cpf; between 34 and 
150 ms), whereas, again, only a tendency is observed with Western Caucasian faces for SFs that fall within the 
significant cluster revealed when face ethnicities were combined (i.e. from 4.8 to 8.2 cpf, between between 34 and 
150 ms; average Z score of −2.187). By comparison, Canadian participants are better than Chinese participants 
at recognizing faces with SFs from 19.6 to 54 cpf, between 34 ms and 100 ms of stimulus presentation. This high 
SF bias for Canadian participants (i.e. from 15.3 cpf and up) occurs as soon as the stimulus appears on screen and 
remains for 117 ms with Western Caucasian faces, but only during a brief time period with East Asian faces (i.e. 
between 200 and 217 ms, for SFs from 16.3 to 26 cpf).

Although the mean SF tuning peaks of the cultural subgroups are similar to the ones we obtained with all the 
participants included, the main effect of culture did not remain significant [F(1,22) = 1.532; p = 0.229; ηp

2 = 0.065], 
likely due to the small sample size of our subsamples. Nonetheless, the trend persisted in the same direction 
[Canadian participants (mean peaks across frames; cpf): M = 18.3; SD = 9.3 for Western Caucasian faces, 
M = 20.4; SD = 6.9 for East Asian faces; Chinese participants (mean peaks across frames; cpf): M = 14; SD = 7.7 
for Western Caucasian faces, M = 18.9; SD = 8.1 for East Asian faces]. In addition, there was still no significant 
effect of time [F(1,22) = 0.204; p = 0.89; ηp

2 = 0.009], no significant effect of face ethnicity [F(1,22) = 2.307; 
p = 0.143; ηp

2 = 0.095] and no significant interaction between factors.
According to these results, it seems unlikely that the cultural differences revealed earlier in this study could be 

explained by differences in performance rate.

Discussion
Respectively influenced by ancient Chinese and Greek civilisations, modern Eastern and Western societies have 
built diametrically opposite cultures and ways of life6. The social structure in which individuals from these respec-
tive cultures are brought up heavily shapes their way of gathering knowledge about the visual world, and thus 
draws their attention to particular aspects of their environment. This systematic attentional bias that arises can 
influence the very nature of the information sampled by the visual system. Indeed, we have previously shown 
that culture can shape basic visual processes such as the extraction of SF information during the recognition of a 
face11, which happens to be a powerful social stimulus. The current study went further still and set out to inves-
tigate the time course of the cultural differences involved in the effective utilization of SF information for facial 
recognition. To the best of our knowledge, this research is the first to directly measure the culture-specific time 
course of SF extraction, by applying an image processing technique specifically designed for this purpose, fitted 
with empirically proven temporal and spatial accuracy (see Supplementary Information).

Earliness of cultural differences. First and foremost, our findings broadly replicate the differences 
revealed in our previous study11 pertaining to the type of information used by East Asian and Western Caucasian 
observers during face identification, while using different groups of participants, a different set of stimuli and a 
modified experimental method and design. That is, Easterners use relatively lower SFs than Westerners, while 
Westerners have a greater bias for higher SFs. These results corroborate the hypothesis that culture shapes the 
visual mechanisms underlying face recognition, and that the observed cultural differences in eye movement pat-
terns (see e.g. refs18,19) most likely reflect different face recognition processes. Furthermore, although we did not 
monitor eye movements, the stimulus presentation was constrained to 300 ms. This constraint allows to further 
our understanding of the link between the culturally divergent eye movement strategies and the utilization of 

Figure 3. Canadian and Chinese observers’ SF tuning peaks (group average), for Western Caucasian and East 
Asian faces respectively.
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different SFs, namely whether eye movements determine the type of visual information sampled or vice versa. In 
fact, the short presentation time has likely restricted participants’ eye movements to one or two fixations. Since 
previous studies have found no cultural difference in the early pattern of fixations of Westerners and Easterners 
during face recognition24,30, our results point to the likelihood that the particular SF extraction strategies used by 
each cultural group could be influenced by distinct covert attentional patterns rather than eye movements, which 
in turn guide the culture-specific fixation strategies previously discovered. As a matter of fact, the link between 
prior covert attention shifts and the deployment of eye movements has been stressed across numerous studies48–51.

On a related note, separate studies have shown 1) that Easterners need the same information as Westerners, 
which is located in the eyes and mouth areas, to recognize a face, but that, unlike Westerners, Easterners use 
those features without fixating them directly, and 2) that, during that same task, Easterners rely on lower SFs than 
Westerners. Put together, this data points to the idea that Easterners tend to process the relevant facial features 
using peripheral vision and, thus, extract the lower SFs located in those features. It would nonetheless be worth-
while, at a later stage, to directly explore the location-specific use of SF information across cultures.

On the other hand, a noteworthy study about cultural differences in facial expression recognition found that 
Easterners seem to allocate a significantly higher processing weight to the area of the eyes52, a pattern that is also 
highlighted in their mental representations of emotions53. Along these lines, considering that Easterners tend to 
use a more specific region of the face when it come to facial expression recognition, it would be interesting to 
examine whether this cultural group would also accomplish this task more accurately with lower SFs.

Most importantly, the method used in the present study highlighted that cultural differences in the use of 
SFs arise quite early during the course of visual information extraction; i.e. as early as 34 ms. Indeed, the method 
applied was specifically implemented to reveal subtle changes in the time course of visual information extrac-
tion, so as to enable us to discover with increased precision the point in time at which culture starts shaping the 
nature of the visual information sampled during the processing of a stimulus. Although the present study has 
contributed valuable insights with regard to how early culture impacts on visual information extraction during 
face processing, a gap still needs to be bridged between the present results and the potential cultural differences in 
how SF information is processed across the neural visual pathway involved in face processing. Studies integrating 
a SF sampling technique to ERP data would be useful to pinpoint the visual processing level corresponding to 
the early cultural differences in SF extraction and use that were laid bare by the current study. In fact, the rapidity 
at which cultural differences in information extraction occur may reflect early visual processing stages that take 
place within the early visual cortex and are not specific to faces, i.e. are not face-selective54,55. If cultural differences 
in SF use were indeed shown to be linked to these early processing stages, it would suggest that culture begins to 
affect perception at a very basic and general processing level of the visual system from which more specific ante-
rior visual processing pathways stem. In fact, evidence from transcranial magnetic stimulation (TMS) suggest 
that face-selectivity in the occipital face area (OFA) - the earliest visual area solicited for facial information pro-
cessing56 - starts at around 100 ms following stimulus onset, whereas an earlier implication of the OFA at around 
50–60 ms is not face-selective57. This may furthermore entail that cultural differences in SF sampling could gen-
eralize to other categories of stimuli beyond faces, an avenue that should be explored.

Time course of cultural differences. The classification image analysis indicated that the cultural differ-
ences in SF information utilization seem to remain consistent throughout time, for about 220 ms. In further ana-
lyzing the time course of the SF tuning peaks we found no significant effect of time, and no interaction between 
time and cultural group. The present method was designed to allow the detection of changes in the SFs sampled 
at different moments during visual processing, for instance, as one could have predicted assuming the presence 
of a cultural influence on the integration of SFs through time. However, despite the relatively good temporal res-
olution of the method (see Supplementary Information), our results do not support variations of the SF utilization 
through time. For that matter, several studies suggest that SF sampling patterns are flexible, and depend on atten-
tional selectivity and task requirements58–61, suggesting that higher level processes may orient the chronology of 
SF information extraction. On the other hand, in an effort to explain the hypothesis that SF extraction generally 
follows a coarse-to-fine pattern, Bar62 proposed a model that highlights the importance of contextual information 
for the recognition of natural objects within a complex visual scene and, thus, the role of very early low SF extrac-
tion as a contextual canvas that increases subsequent local object recognition efficiency. According to this model, 
the extraction of higher SFs occurs later in the process to enhance object features for better discrimination, and 
is facilitated by prior processing of low SFs. Thus, it is possible that the face identification task used in this study 
did not warrant the need for participants to resort to a systematic coarse-to-fine SF extraction pattern as the 
featured stimuli were not made up of a complex array of miscellaneous elements, an arrangement that typically 
characterizes visual scenes. In contrast, using single objects, Caplette, Wicker and Gosselin63 recently revealed 
the use of a coarse-to-fine SF sampling pattern in neurotypical observers (as opposed to those with diagnosed 
Autism Spectrum Disorder - ASD) during object recognition tasks. Although visually much simpler than scenes, 
objects, unlike faces, typically have a general heterogeneous shape which increases the likely usefulness of leading 
coarse-grained, followed by fine-grained, visual information for more efficient recognition. Nevertheless, our 
results, marked by a temporally stable cultural difference in the use of SFs, seem to support the hypothesis that 
Westerners and Easterners display an early and steady, culturally specific, SF sampling bias when recognizing a 
face.

Other-race effect. Although the aim of the present study was to understand how culture impacts on the 
time course of SF sampling, the experimental design also allowed to highlight interesting results with respect to 
the theoretical grounds of the other-race effect. In fact, the results did not indicate an interaction between culture 
and face ethnicity on the SF tuning of participants, suggesting that individuals do not modify their strategy of SF 
extraction as a function of the ethnicity of the face processed. The analysis on group classification images supports 
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this finding: although slight differences are observed in the SFs used with each face ethnicity, these differences did 
not interact with the effect of culture. Indeed, the data points to the conclusion that, for a given culture, similar 
SFs were correlated with accuracy for both face ethnicities, but that the association was stronger for own-race 
than other-race faces. The finding that similar SFs are used with both face ethnicities replicates the results we 
had obtained precedently while using a different set of faces, a different method (SF sampling without the time 
dimension), and different groups of participants11. However, in that previous study, we remained cautious in our 
interpretation because an Ideal Observer analysis had revealed that the Chinese faces selected were objectively 
more difficult to discriminate from one another than the Western Caucasian faces, a difference that could have 
influenced the SFs sampled. In the present study, however, we used an image matching Ideal Observer algorithm 
prior to the stimulus selection to ensure that faces from both ethnic categories used in the experiment were of 
comparable difficulty to identify. We can thus now conclude with more confidence that individuals keep using 
a similar SF sampling strategy when they process same-race as well as other-race faces. This result is also in line 
with the finding that similar eye movements are observed during the processing of own-race and other-race faces 
(see e.g. refs18,19,21), although others have found otherwise (see e.g. refs64,65).

Conclusion
Over the most recent few years, cross-cultural research trends have been drawing sharpening attention to queries 
on the nature and extent of the cultural differences observed in the course of various visual tasks. Within this 
scope, the present article is an valuable contribution to the ongoing inquiry into how and when culture starts 
to tint the mechanisms and processes involved in visual recognition. This study used a SF filtering technique 
fine-tuned for temporal and spatial precision to uncover a considerably early cultural effect on the extraction 
of SF information during face identification, one that potentially falls within the processing time range of early 
visual areas (i.e. <100 ms55). In light of this, a symmetrically fine-tuned investigation into the early neural sub-
strates of visual face and object recognition should examine whether or not culture affects early overreaching 
visual processes, not circumscribed to specific stimulus categories.

Methods
Participants. Twenty-two Western Caucasian Canadian (7 men; mean age of 24; SD = 2.4) and twenty-three 
East Asian Chinese (7 men; mean age of 21; SD = 1.9) participants completed the task. Chinese participants were 
tested in Hangzhou (Zhejiang province), were all born in China, lived in China and had little to no experience 
with occidental cultures. Canadian participants were tested in Gatineau (Quebec province), were born in Canada, 
lived in Canada, and had little to no experience with oriental cultures. All participants had normal or correct-
ed-to-normal vision. Sample size was based on our previous article regarding cultural differences in SF use, in 
which a similar method was used11, as well as other studies that made use of the SF Bubbles method33,39. Given our 
sample size and an expected F-test effect size (ηp

2) of 0.188, we have approximately 91% statistical power (as meas-
ured by G*Power 3.1) to observe an effect of this size with a repeated-measures mixed ANOVA, as will be applied 
in the present study. The theoretical effect size was derived from the average effect sizes across all significant two-
way or three-way interactions found in several relevant studies, and one meta-analysis, pertaining to either cul-
tural perception, facial or expression recognition (i.e. effect sizes: 0.0866, 0.1267, 0.1468, 0.2869, 0.3268).

The experimental protocol used in this study was approved by the Institutional Review Boards of Université 
du Québec en Outaouais and Hangzhou Normal University; all experiments conducted conformed to relevant 
guidelines and regulations with regard to the use of human participants. Each participant signed a written, 
informed consent form prior to the experiment.

Material and stimuli. All tasks were run on the MATLAB software with the Psychophysics Toolbox70,71. 
Western Caucasian face images were drawn from the Radboud72, KDEF73 and the PICS74 databases, and Chinese 
face images were drawn from the CUFS75 and from William Hayward’s face database. All faces displayed a neutral 
facial expression. Accidental local features such as brown spots or rashes were removed using the Photoshop soft-
ware. Faces were aligned as well as possible, using as parameter the least-square measure, on the positions of eyes, 
nose and mouth – by means of translation, rotation, and scaling. They were revealed through a uniform mask 
to hide external facial features such as hair and ears. Subsequently, the luminance and spatial frequency content 
were equalized throughout all face images using the SHINE toolbox76. Finally, for each face ethnicity, a subset of 
8 identities was selected from a pool of 130 faces by using a custom image matching algorithm to ensure that both 
subsets contained images that were inherently of comparable difficulty to discriminate from an Ideal Observer 
perspective.

Due to limited material resources, stimuli were displayed on calibrated LCD (52 × 29 cm; 1920 × 1080 p) 
monitors for the experiment in Canada, and calibrated LCD (37 × 30 cm; 1024 × 768 p) and CRT (32 × 24 cm; 
1024 × 768 p) monitors in China. In Canada, the stimuli face had an on-screen width of 5 cm and participants 
were seated at a viewing distance of 47.7 cm. In China, with the CRT monitors, the stimuli face had an on-screen 
width of 6 cm and participants were seated at a viewing distance of 57.1 cm, and with the LCD monitors, the stim-
uli face had an on-screen width of 7 cm and participants were seated at a viewing distance of 66.5 cm. To ensure 
that viewing distance was constant throughout the entire experiment, all participants were asked to position their 
head on a chin and forehead rest, facing the screen at the appropriate viewing distance. In consideration of the 
foregoing, the use of two different types of monitors in no way invalidates our results as the viewing distance was 
adjusted relative to the on-screen size of the stimuli so that the image face width ultimately subtended 6 degrees 
of visual angle. This means that the proximal stimuli (retinal images), and thus the actual SFs projected on the 
retina, were similar in both countries. Furthermore, all monitors had a calibrated luminance and a refresh rate of 
60 Hz. In addition, Chinese participants had been tested with both LCD and CRT monitors in our previous study 
on how culture influences SF use11, and the results were not affected by the type of monitors used.
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The stimuli were produced in real-time using a transient SF filtering technique. From a conceptual point of 
view, the method worked as follows. On every trial, one stimulus consisted in a series of faces each representing 
one ‘time frame’. Each trial was composed of eighteen frames. One by one, all image frames independently under-
went a SF filtering process. More specifically, among all the SFs available in the image, a subset was randomly 
sampled. Thus, each of the eighteen frames represented a face in which different subsets of SFs were available. 
The eighteen frames were first sampled independently from one another, so the SFs on different time frames 
varied randomly. However, the eighteen frames in the final stimuli were not completely independent from one 
another, because a temporal smoothing was applied to avoid abrupt changes in the SFs presented. This temporal 
smoothing had for effect to create an overlap in the SFs sampled in three successive frames. A spatial smoothing 
was also applied such that when one SF was sampled, its neighbouring SFs were also sampled. The number of 
neighbouring SFs that were sampled at the same time as the target SF depended on the specific target SF sampled: 
the higher it was, the more neighbouring SFs were sampled at the same time. This variation was implemented to 
adjust the SF selection to the human visual system’s sensitivity to SFs (see ref.10). Thus, in the following, what is 
called a ‘bubble’ is the smooth sampling of the randomly targeted SF along with its SF neighbours.

On a more technical ground, the creation of one stimulus integrates a manifold of computational steps illus-
trated in Fig. 4. First, each 256 × 256 pixels image frame is centered on a uniform background twice its size as 
a means of minimizing edge artefacts in the SF domain (Fig. 4a). Second, the padded image is converted to a 
complex amplitude matrix – representing the SF spectrum of the image – by way of a fast Fourier transform 
implementation (Fig. 4b). Third, a random matrix of 10,240 × 54 elements containing N ones – representing the 
number of target SFs sampled – distributed among zeros is generated (raw sampling matrix; Fig. 4c). This raw 
sampling matrix is the basis to create the eighteen SF filters that are used for each individual image frame. Then, 
a two-dimensional Gaussian kernel with standard deviations of 1.5 cycles per image (cpi) and 1.3 frames for the 
dimensions of SF and time respectively is produced, and is convoluted with the raw sampling matrix to create 
smooth ‘bubbles’ through SFs and time (smooth sampling matrix; Fig. 4d,e). This smoothing procedure makes 
it so that the SF information sampled at a given frame starts gradually appearing during the previous frames and 
gradually disappearing during the subsequent frames. The SF information is thus present with at least half of its 
maximum intensity for about three frames (Full Width at Half Maximum, or FWHM, of 3.06 frames), allowing 
for a visually smooth transition across time. Fourth, the smooth sampling matrix is re-sampled along the dimen-
sion of time in order to exclusively keep the center-most eighteen frames. Thereafter, the resulting eighteen SF 
vectors that constitute the smooth sampling matrix undergo a logarithmic transformation to adjust the SF selec-
tion to the human visual system’s sensitivity to SFs (log sampling matrix; Fig. 4f; see ref.10). As a result, a 256 × 18 
elements log sampling matrix is obtained. Thereafter, each one of the eighteen 256 element vectors is rotated 
about its origin to create a two-dimensional isotropic SF filter for each image frame (2D filters; Fig. 4g). Then, 
the 2D filters are iteratively multiplied point-wise with the corresponding padded Fourier transformed image 
for each frame (Fig. 4h), and an inverse fast Fourier transformation is applied to each product (Fig. 4i). At each 
frame iteration, the central part of the filtered image (256 × 256 pixels) is cropped and sequentially integrated into 
a video which constitutes the final stimulus for a given trial (Fig. 4j). On each trial, these frames were displayed in 
succession at the same rate of about 16–17 ms – in line with all monitors’ vertical retrace rate of 60 Hz – adding up 
to a stimulus on screen appearance of 300 ms per trial (see Fig. 1 for a stimulus example).

Procedure. The experiment comprised three phases. The first phase was a practice in which participants 
learned sixteen faces, including eight Western Caucasians (four males) and eight East Asians (four males). The 
second phase aimed at individually adjusting the difficulty level of the task such that all the participants reached 
an accuracy criterion of 51%. The third phase was the main task, used to measure the SF tuning of the partici-
pants. In all three phases, the task was the same: on each trial, following a 500 ms centred fixation cross, one of 
the sixteen learned faces was randomly presented at the center of the computer screen, and the participant was 
asked to identify it. The task was set up as a block design, each block featuring either one of the face ethnicities. 
The face ethnicity order was counterbalanced between subjects. More details about each phase are provided in 
the following paragraphs.

In the first phase, participants first familiarized themselves with eight faces of one ethnicity during a fixed 
period of eight minutes. Each face was associated with a keyboard key, and participants needed to learn this 
association in order to identify the faces during the experiment. The assigned keys covered one keyboard row 
so that participants could place both hands comfortably, and were consistent for all participants. After this first 
eight-minute familiarization period, participants completed one practice block by trying to identify the eight 
learned faces (unfiltered). On each trial of the practice phase, participants were instructed to first fixate the fix-
ation cross that appeared in the middle of the screen for a duration of 500 ms. Then, a face was displayed until a 
response was given, and appropriate feedback was transmitted on the screen following each trial. Subsequently, 
a second eight-minute period of familiarization was provided to learn the eight faces of the other ethnicity and 
their associated keyboard keys. After this second familiarization period, participants then completed a practice 
block by trying to identify these eight new unfiltered faces. Practice blocks of 160 trials went on, while alternating 
between both face ethnicities, until participants reached an accuracy of at least 92% for two consecutive blocks 
of both Western Caucasian and East Asian faces. Once this criterion was met, they could advance to the second 
phase, which implemented the dynamic SF filtering technique.

The second phase aimed to find the number of bubbles necessary to maintain an accuracy rate around 51% 
(the same threshold value as in Tardif et al.11 was used for the purpose of replication). Adjusting the number of 
bubbles is a procedure typically applied when using the SF Bubbles method to keep participants’ performance 
level up to a fixed threshold. On one hand, this measure avoids dramatically hindering participants’ accuracy 
which, if not significantly above chance level, offsets the validity of correct trials. On the other hand, it prevents 
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participants from reaching a high level performance plateau making it difficult to reveal which SF information 
is actually useful and which information is superfluous. In practice, increasing the number of bubbles means 
that, on average, more SF information will be visible to the participant, whereas decreasing it means that, on 
average, less SF information will be visible to the participant. More specifically, the number of bubbles corre-
sponds to the number of target SFs sampled across one trial (i.e. the number of ‘ones’ distributed across the ‘raw 
sampling matrix’). Since the distribution of bubbles across the ‘raw sampling matrix’ is random, a higher number 
of bubbles can either increase the range of SF bands selected within one trial or, if the bubbles mostly fall within 
a small range of SFs, increase the magnitude (i.e. the intensity at which the SFs are present in the stimulus) of 
the selected SF bands. The procedure during that second phase was essentially the same as for the practice trials, 

Figure 4. Example of the creation of one stimulus with the temporal SF filtering method.
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but the faces were filtered using the transient SF Bubbles method explained above, and no feedback was given. 
Crucially, the stimulus was presented to the participant for 300 ms, and followed by a high contrast random noise 
mask. Participants completed blocks of 150 trials, alternating between blocks of Western Caucasian and East 
Asian faces in the same order as for the previous task. The number of bubbles was adjusted on a trial-by-trial basis 
using QUEST77. QUEST is a Bayesian adaptive procedure which, as implemented in the present task, estimated 
on each trial the most probable number of bubbles needed by a participant to reach the target accuracy criterion. 
Participants completed as many blocks as needed to reach a stable number of bubbles with both face ethnici-
ties. Once stability was achieved, the final number of bubbles needed to steadily attain threshold performance 
for blocks featuring the other-race faces (relative to the participant’s ethnicity) was thereafter applied to stimuli 
of both ethnicities during the main task. We chose to base the final number of bubbles on the other-race faces 
because participants were generally worse with such faces, and we wanted to avoid a chance-level performance 
with them. We used the same number of bubbles for both face conditions to ensure that they were comparable in 
terms of the total amount of visual information they conveyed.

From that point on, the main task (i.e. third phase) started. The procedure during the main task was the 
same as for the second phase, except that the number of bubbles was fixed to the value obtained during the sec-
ond phase. Participants completed 30 blocks, each consisting of 100 trials, again alternating between blocks of 
Western Caucasian and East Asian faces. Accuracy rate was monitored after each block to make sure that it did 
not reach an upper criterion of 75% with the same-race faces. If the accuracy rate was higher than 75%, a new 
block from the second phase (i.e. in which bubbles are adjusted with QUEST) was completed to readjust the 
number of bubbles. Only the blocks from the main task were included in the analyses, for a total of 3,000 trials.

Classification image computation. The analysis method is essentially hinged on an association between 
the participants’ accuracy and the dynamic SF filter applied at each trial. More specifically, a linear combination 
is performed across all trials by appointing a positive weight to the raw sampling matrices (Fig. 4c) that yielded a 
correct response, and a negative weight to those that led to an incorrect response. The values of these weights are 
calculated by transforming accuracy values on each trial (i.e. ones and zeros) into Z scores using the average and 
standard deviation of the participant’s accuracies. The result of this linear combination procedure is called a clas-
sification image. In fact, the procedure to compute the classification images is similar to a multiple linear regres-
sion in which there are 2304 independent variables (i.e. 128 spatial frequencies × 18 frames), and the dependent 
variable is the accuracy. In the present case, the classification images represent how strongly the availability of 
each SF on each frame is associated with the participant’s accuracy. For each participant, two classification images, 
one for each face ethnicity, were produced. Each classification image was then smoothed by convolving it with a 
2-dimensional Gaussian kernel subtending standard deviations of 2.5 cpi by 1.3 time frames. Then, as was done 
for the experimental stimuli, a logarithmic transformation was applied to the classification images. Lastly, the 
classification image values were converted into Z scores using an estimate of the mean and standard deviation 
under the assumption of the null hypothesis, derived from a permutation procedure applied to the data. Finally, 
for each face ethnicity separately, and each cultural group, the individual classification images were summed 
together and divided by the square root of the number of participants.
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