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In recent years, horizontal spatial information has received attention for its role in face perception. One
study, for instance, has reported an association between horizontal tuning for faces and face identification
ability measured within the same task. A possible consequence of this is that the correlation could have
been overestimated. In the present study, we wanted to reexamine this question. We first measured face
processing ability on the Cambridge Face Memory Test+, the Cambridge Face Perception Test, and the
Glasgow Face Matching Test. A single ability score was extracted using a principal components analysis.
In a separate task, participants also completed an identification task in which faces were randomly filtered
on a trial basis using orientation bubbles. This task allowed the extraction of individual orientation
profiles and horizontal tuning scores for faces. We then measured the association between horizontal
tuning for faces and the face-processing ability score and observed a significant positive correlation.
Importantly, this relation could not be accounted for by other factors such as object-processing ability,
horizontal tuning for cars, or greater sensitivity to horizontal gratings. Our data give further credence to

McGill University and University of Quebec in Outaouais

the hypothesis that horizontal facial structure plays a crucial role in face processing.

Public Significance Statement

In recent years, there has been a growing interest for spatial orientations and especially horizontal
structure in the face processing literature. Here we measured the link between individual differences
in face-processing ability and selective utilization of horizontal face structure and found a significant
association between the two variables. These results are important because they further our under-
standing of fundamental face-processing mechanisms and possibly open the door to clinical appli-
cations with individuals for whom face recognition poses a challenge, such as through perceptual
training based on horizontal spatial information.
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A variety of theories have been proposed to explain how the visual
system makes sense of the face stimulus. Holistic processing (e.g.,
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Maurer, Grand, & Mondloch, 2002; Richler, Palmeri, & Gauthier,
2012; Rossion, 2008; Yin, 1969) and its link with individual differ-
ences in face processing skills (e.g., DeGutis, Wilmer, Mercado, &
Cohan, 2013; Richler, Cheung, & Gauthier, 2011), for example, has
been a primary focus of much of the past decades.

However, many studies suggest that humans rely on a restrained
subset of the available information to recognize faces. In the image
domain, experiments have shown that face recognition is largely
driven by the eyes (Butler, Blais, Gosselin, Bub, & Fiset, 2010; Gold,
Mundy, & Tjan, 2012; Gosselin & Schyns, 2001; Sekuler, Gaspar,
Gold, & Bennett, 2004), that differences in face-processing ability are
linked with utilization of this feature (Royer et al., 2018; Tardif et al.,
2019), and that prosopagnosia comes from an inability to process this
face feature (Bukach, Le Grand, Kaiser, Bub, & Tanaka, 2008;
Caldara et al., 2005; Fiset et al., 2017; Pancaroglu et al., 2016;
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Rossion, Kaiser, Bub, & Tanaka, 2009). In the spatial frequency
domain, face identification has been shown to rest on a band of
approximately 8-20 cycles per face (Gaspar, Sekuler, & Bennett,
2008; Nisidnen, 1999; Royer et al., 2017; Tardif et al., 2017; Willen-
bockel et al., 2010), largely associated with internal facial features
(Keil, 2009).

Recently spatial orientations have garnered attention for the role
horizontal information appears to play in various aspects of face
processing, such as detection (Balas, Schmidt, & Saville, 2015),
identification (Dakin & Watt, 2009; Goffaux & Dakin, 2010;
Goffaux, Duecker, Hausfeld, Schiltz, & Goebel, 2016; Goffaux &
Greenwood, 2016; Goffaux & Schiltz, 2015; Pachai, Sekuler,
Bennett, Schyns, & Ramon, 2017), and emotional facial expres-
sion recognition (Balas & Huynh, 2015; Balas, Huynh, Saville, &
Schmidt, 2015; Duncan et al., 2017; Huynh & Balas, 2014; Yu,
Chai, & Chung, 2018). Horizontal information also supports be-
havioral signatures of face-processing specialization, such as the
face inversion effect (Goffaux et al., 2010, 2016; Pachai, Sekuler,
& Bennett, 2013). Interestingly, this information is object based,
and a 90° image rotation will induce a shift toward the vertical
image—that is, horizontal facial—structure (Huynh et al., 2014).
This is in line with recent evidence suggesting that orientation
tuning for faces is in fact flexible and depends on task demands
(Goffaux, 2019).

If horizontal facial information is linked to recognition, then we
should observe an association between face-processing ability and
use of this information. As it stands, one study has addressed the
question (Pachai et al., 2013; see also, for facial expressions,
Duncan et al., 2017). However, face-processing ability and hori-
zontal tuning for faces were not measured independently. Indeed,
participants completed an identification task in which orientation-
filtered (eight bands) or unfiltered (white) noise was added to
stimuli, and a noise-masking threshold was calculated separately
for each noise condition. Individual horizontal tuning scores were
then extracted by calculating the slope of the regression lines
separating the horizontal and vertical noise-masking thresholds,
and identification ability was taken as the white noise—masking
threshold. A moderate correlation was observed between these
measures, meaning that participants who performed better in the
white noise condition used horizontal information more selec-
tively. Although these results are important, one cannot help but
notice the potential for circularity. Indeed, subjects who make the
best use of diagnostic information in a task will also perform better
in this very same task, and there will be more overlap in variance
if diagnostic information utilization and ability are measured using
the same task than if they are measured using different tasks. For
this reason, it is possible that the correlation observed by Pachai
and colleagues is somewhat inflated (the argument also applies to
the study of Duncan et al., 2017), and it is of great theoretical
importance to verify that this link generalizes across other face-
processing tasks.

We therefore administered four face-processing tasks in this
study. Three were validated measures of individual differences in
face processing, from which we extracted a single ability score.
The fourth task was designed to measure individual orientation
profiles and horizontal tuning for faces using orientation bubbles.
The link between horizontal tuning for faces and face-processing
ability was then verified. Two measures of object processing, and

one measure of low-level image processing, were also included
(see online supplemental materials, Results, and Discussion) in a
partial correlation analysis to serve as control measures.

Method

Participants

Thirty-seven subjects aged between 18 and 40 years (M = 25.72
years old, SD = 5.67) were recruited at the Université du Québec
en Outaouais to complete a battery of tests (below; see also online
supplemental materials). Some of these were outside the scope of
the present paper and the results are thus not reported here. A
power analysis using G-power (Faul, Erdfelder, Buchner, & Lang,
2009) revealed that this study was adequately powered to detect a
correlation of r = .4 with a power of 0.8 and Type I error
probability of 0.05. Compared with previous results, this value was
more conservative to account for the fact that we measured hori-
zontal tuning for faces and face-processing ability independently
and also because it was closer to other results (Royer et al., 2018).
All participants had normal or corrected-to-normal vision and
received financial compensation for their participation. This ex-
periment was conducted in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki) and
received approval from the university’s research ethics committee.

Apparatus

The experiments were conducted on MacMini computers. Stim-
uli were displayed on a 24-in BenQ LCD monitor with 1920 X
1080 resolution and evenly distributed luminance levels. Partici-
pants sat in a dark room and a chin rest was used to maintain a
69-cm viewing distance.

Face-Processing Ability

Three tasks were completed: the Cambridge Face Memory
Test+ (CFMT+; Duchaine & Nakayama, 2006; Russell, Duch-
aine, & Nakayama, 2009), the Cambridge Face Perception Test
(CFPT; Duchaine, Germine, & Nakayama, 2007), and the Glas-
gow Face Matching Test—short version (GFMT; Burton, White, &
McNeill, 2010). Cambridge tests were programmed in Java, the
GFMT in Matlab (Natick, MA).

Orientation Bubbles Task

The images portrayed 10 individual faces (half female) display-
ing a neutral expression (Willenbockel et al., 2010). Luminance
histograms and spatial frequency spectra were equalized with the
SHINE toolbox (Willenbockel et al., 2010) to reduce low-level
interstimuli variance. The images were downscaled to 512 X 512
pixels (7°), and an oval that blended with the gray monitor back-
ground (66.33 cd/m?) was applied to hide the facial contour and
external features (Figure 1a). Faces were spatially aligned on the
positions of the eyes, nose, and mouth, using translation, rotation,
and scaling.

To create an orientation-bubblized stimulus, a base image (Fig-
ure la) was first submitted to the Fast Fourier Transform algo-
rithm, and its quadrants were shifted to reveal its orientation
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content (Figure 1b). An orientation sampling vector was then
created by summing 10 pairs of symmetrical Von Mises orienta-
tion samples, or orientation bubbles (Figure Ic). This circular
distribution ranges from —180° to + 180° and has two parameters,
W (peak) and k (width, equal to 92.9, or about 14° [Goffaux et al.,
2010]). One bubble consisted of two Von Mises, one with param-
eter W, and the other with parameter w; + 180°. The w, parameters
(i equal 1 to 10) were randomly drawn with replacement from a
rectangular distribution of orientations.

An orientation sampling matrix (Figure 1d) of dimension 512 X
512 pixels was created by applying the orientation sampling vector
to an orientation matrix equal to tan”~ '([y. 255]/[x — 255]), where
y and x correspond to the columns and rows of the matrix.
Sampling proportion ranged from 0 to 1. The orientation sampling
matrix was then applied to the image orientation content, produc-
ing an orientation-bubblized Fourier spectrum, and the product
was brought back to the image domain with the inverse Fast
Fourier Transform (Figure le).

The task consisted of a 10-alternative forced choice identifica-
tion procedure sequenced into blocks of 100 trials each and was
programmed in Matlab using custom code and the psychophysics

Orientation bubbles procedure. See text for description. The face shown is that of author Daniel Fiset.
See the online article for the color version of this figure.

toolbox (Brainard, 1997; Pelli, 1997). A trial began with a central
fixation cross that was displayed for 500 ms. Then a stimulus
appeared in the center of the monitor and remained visible until a
response was entered, using one of 10 preallocated keys on the
computer keyboard (i.e., one per identity).

Participants first performed two practice versions of this task:
noiseless broadband and noisy broadband. In the noiseless prac-
tice, participants completed as many blocks as needed to achieve
90% correct responses (M = 2 blocks, SD = 0.97). Then partic-
ipants completed one noisy practice block in which white noise
was added to each face stimulus. This was done so that participants
could familiarize themselves with the noisy aspect of stimuli.

Finally, participants completed six experimental blocks with
orientation-bubblized stimuli to which white noise was added.
In both the noisy practice and experimental task, difficulty was
manipulated on a trial basis so that approximately 55% correct
responses (halfway between floor [10%] and ceiling [100%])
were maintained. Specifically, we used QUEST (Watson &
Pelli, 1983) to determine the proportion p, comprised between
0 and 1, of the broadband (noisy practice) or orientation-
bubblized (experiment) image i that was needed. To this, a
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proportion 1 — p of white noise w was added. Thus, the final
stimulus can be expressed as ip + w(l — p), and its signal to
noise ratio (SNR) can be expressed as p/(1 — p).

Results and Discussion

Participants needed an average SNR of 2.46 (SD = 0.94; 95%
confidence interval CI [2.15, 2.78]) to maintain near 55% correct
responses in the orientation bubbles task; there was no floor effect
and all could perform the task with some noise. It must be stated
that orientation bubbles reduce the image RMS contrast (see
Figure 1, a and e). For example, the maximum possible image
RMS contrast (when p=1) was approximately 0.022 (compared
with the base image RMS contrast of approximately 0.072); in
contrast, the maximum possible noise RMS contrast (when p = 0)
was 0.22.

To extract orientation profiles, we carried out a classification
image analysis (Eckstein & Ahumada, 2002; Gosselin & Schyns,
2004), analogous to a multiple linear regression of orientation
bubbles on response accuracy. For each subject, a weighted sum of
orientation sampling vectors was calculated, attributing positive/
negative weights (standardized accuracies) to filters that led to
correct/incorrect responses, respectively. The procedure generated
n (sample size) vectors of regression coefficients (i.e., classifica-
tion vectors) quantifying the association between orientations and
face recognition accuracy. These were standardized using the
mean and standard deviation of the null hypothesis, the parameters
of which were estimated by simulating 1,000 classification vectors
with as many random permutations of accuracies.

A group classification vector was then generated by summing
individual vectors and dividing the outcome by \/n. A pixel test
(Chauvin, Worsley, Schyns, Arguin, & Gosselin, 2005) was ap-
plied to determine the statistical significance threshold (Zcrit =
2.49, p < .05; two tailed). Figure 2 shows that, at the group level,
information around the horizontal axis was positively correlated
with face identification (Zmax = 15.07), whereas oblique and
vertical orientations were negatively correlated (Zmin = —7.48),
both ps < 0.001.

N
o
|

— Identification
— — Zcrit, p < 0.05

-
[¢;]

-
o

and performance (z-score)
o 6]

Correlation between orientation
&

-10 . . .
-180 -135 -90 -45 0
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Figure 2. Group classification vector from the orientation bubbles task.
Tlustration of the correlation (z-score) between orientations and accuracy
for face identification is shown. Gray dotted lines plot the two-tailed
significance threshold.

. r=-0.59
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Figure 3. Scatterplot of the correlation between horizontal tuning and
signal to noise ratio (SNR), » = —0.59, p < .001.

We then proceeded to verify the correlation between face iden-
tification ability and utilization of horizontal facial information. To
generate the latter measure, we applied a 1D Von Mises distribu-
tion (sum equal to 1, full width at half maximum equal to 42° [the
value best fitted to the data, and similar to Pachai, Bennett, &
Sekuler, 2018]) on the —90° horizontal axis of standardized indi-
vidual classification vectors. The sum of a resulting product vector
then represents a weighted average of horizontal information uti-
lization for a single subject and can be taken as an approximation
of horizontal tuning—with maximum weight given to coefficients
square on the horizontal axis, and a gradually decreasing weight
given to coefficients as they fell farther away from this axis.

Horizontal tuning was negatively correlated with SNR thresh-
olds (see Figure 3), rsnr, Tuning = —0-39 (Fspearman = —0.59),
95% CI [—0.75, —0.35], p < .001. Thus, participants who relied
more selectively on horizontal facial information required less
signal in the orientation bubbles task. This echoes the results of
Pachai et al. (2013).

To verify the generalization of this relationship to other tasks, we
first extracted a single measure of face-processing ability using the
same procedure as in Royer, Blais, Gosselin, Duncan, and Fiset
(2015, 2018), that is, submitting CFMT+, CFPT, and GFMT scores
to a principal components analysis of the correlation matrix. The
solution produced one component with eigenvalue >1. Factor load-
ings confirm that this component captures variance from each face
processing task (CFMT+ = 0.84; CFPT = 0.7; GFMT = 0.47).
Scores on this component correlated with SNR, rsyg apitiy = —0.65
(Fspearman = —0.56), p < .001, 95% CI [-0.79, —0.43], indicating
that the bubbles task successfully captured individual differences in
face-processing ability.

Critically, face processing ability correlated with horizontal
tuning for faces (see Figure 4), 7 pitity, Tuning = 0-41 (Fspearman =
0.37), p < .05, 95% CI [0.11, 0.63]. Using Lee and Preacher’s
(2013; Steiger, 1980) web app for dependent correlations, we
tested the difference between rryuing. abitiy 04 Fryning, snr and
found it to be nonsignificant, z = —1.51, p > .05. Applying
Fisher’s transformation and a z test, we also compared rpying,
Ability With the results of Pachai et al. (r = .52, n = 32) and found
a nonsignificant difference, z = —0.56, p > .05.

Interestingly, Fryning, Abitiy TéMained almost unchanged (z =
0.1, p > .05) after controlling for factors such as object recognition
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Figure 4. Scatterplot of the correlation between horizontal tuning and the
face-processing ability score, r = .41, p < .05.

ability, horizontal tuning for cars (online supplemental Figure 1),
and sensitivity to horizontal gratings (see, for details, online sup-
plemental materials), rp .. = 0.39, 95% CI [0.08, 0.64], p < .05.
This is in line with previous results suggesting that the horizontal
tuning observed in face recognition is task specific (Goffaux,
2019; Huynh et al., 2014) because the correlation between pro-
cessing ability and horizontal tuning for faces is not predicated
upon an overall better use of horizontal image structure. Thus, it
may be that face recognition expertise begets selectivity to hori-
zontal facial structure (see also Pachai et al., 2017), which would
then be reflected in the more systematic deployment of the optimal
(horizontally tuned) processing strategy (Royer et al., 2018).
Results similar to ours were obtained by correlating face-
processing ability with utilization of the eyes (Royer et al., 2018),
face selectivity of the fusiform gyrus (Furl, Garrido, Dolan, Driver,
& Duchaine, 2011), and N170 latency (Herzmann, Kunina, Som-
mer, & Wilhelm, 2010). Interestingly, there is evidence to suggest
that the fusiform face area and the N170 are both tuned to the eyes
(Ghuman et al., 2014; Smith, Gosselin, & Schyns, 2004), to
horizontal facial information (Goffaux et al., 2016; Hashemi, Pa-
chai, Bennett, & Sekuler, 2018; Jacques, Schiltz, & Goffaux,
2014), and also that processing of horizontal facial structure is best
predicted by utilization of the eyes (Duncan et al., 2017). Thus, it
may be that reliance on horizontal facial information is the process
binding these various associations with face processing ability.

Conclusion

Our results reinforce the case for the fundamental role of hori-
zontal spatial orientations in face recognition by showing that the
best face recognizers in three well-validated measures of individ-
ual differences in face-processing ability were more selectively
tuned to this diagnostic information and that this association is
likely task-specific.
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