

Context

The Other-Race Effect (ORE) refers to a set of phenomena in which own-race faces are processed differently from other-race faces, resulting in a robust recognition disadvantage for other-race faces [1]. Despite numerous perceptual and social-motivational models, the role of attentional resources in the ORE is not well understood [2, 3]. Yet, these can play an important role in assessing perceptual and higher-level social-motivational factors [4]. Recently, we suggested that the own-race recognition advantage arises because of the relative inefficiency with which other race faces are perceptually processed, leading to greater input from higher level executive (i.e., decisional) processes for other- compared to own-race faces [5]. In this study, we aimed to replicate these findings and explore potential electrophysiological correlates of these effects.

Method

- Scalp electroencephalography (EEG; 64 channels) of twenty White participants (one excl.) was measured while they each performed 960 trials (20 blocks, 48 trials/block) of a dual task paradigm.
- **Dual-task paradigm (Fig. 1)**
- Auditory Task (T1). Tone Categorization
- Visual Task (T2). Recognition, with either a White (ownrace) or Eastern Asian (EA, other-race) face.
- Variation of the Stimulus Onset Asynchrony (SOA) between T1 and T2 onsets to modulate the *overlap* (and conflict for central attention resources) between the two tasks, (150, 300, 600, 1200ms; shorter SOA equals more conflict).
- Variation in the ambiguity of facial identity using face morphing to modulate T₂ processing **difficulty** (easy, hard).

Repeat 20x

Figure 1. Experimental procedure. Participants had to learn a memory set of either two EA or White faces [Phase 1]. Then, they sequentially categorize a sound (T1, 150ms) as high or low pitch and matched a test face (T2, 200ms) to the appropriate set face [Phase 2]. Instructions emphasized participants performed both tasks online (i.e., without postponement).

References

[1] Pesciarelli, F., Leo, I., & Serafini, L. (2021). Electrophysiological correlates of unconscious processes of race. Scientific Reports, 11(1), 11646. [2] Byatt, G., & Rhodes, G. (2004). Identification of own-race and other-race faces: implications for the representation of race in face space. Psychonomic Bulletin & Review, 11(4), 735-741. [3] Rodin, M. J. (1987). Who is memorable to whom: A study of cognitive disregard. Social Cognition, 5(2), 144-165. [4] McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18(2), 471. [5] Duncan, J., Galinier, C., Blais, C., Fiset, D., & Caldara, R. (2022). Early automatic processes shape other-race effects for faces. Journal of Vision, 22(14), 3648-3648. [6] Hesselmann, G., Flandin, G., & Dehaene, S. (2011). Probing the cortical network underlying the psychological refractory period: a combined EEG-fMRI study. Neuroimage, 56(3), 1608-1621. [7] Kramer, A. F., Strayer, D. L., & Buckley, J. (1991). Task versus component consistency in the development of automatic processing: A psychophysiology, 28(4), 425-437. [8] Watter S, Geffen GM, Geffen LB. The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology. 2001 Nov;38(6):998-1003.

Electrophysiological evidence that own-race faces are recognized more automatically

Chloé Galinier, Justin Duncan, Caroline Blais & Daniel Fiset Département de Psychoéducation et de Psychologie, Université du Québec en Outaouais

Analyses and Results

Behavioral data (Fig. 2)

- RT2 were submitted to a 2 (Race) by 2 (Difficulty) by 4 (SOA) repeated measures (RM) ANOVA. The results replicated previous findings [5].
- For **EA faces**, the 58ms effect of difficulty was statistically constant across SOAs, F(2, 37.5) = 1.3, p = 0.3, showing postperceptual handling of this increased difficulty [4].
- For White faces, the effect of difficulty marginally decreased as SOA got shorter, from 84ms at longest SOA, *t*(19) = 5.2, *p* < 0.001, to 14ms at shortest SOA, t(19) = 0.6, p = 0.53, showing a typical locus-of-slack effect, F(2,2,4.6) = 2, p = 0.09, and hinting at a perceptual handling of this difficulty [4].

EEG data (Fig. 3)

- ERP amplitudes were submitted to a 2 (Race) by 3 (SOA: 300ms, 600ms, 1,200ms) RM ANOVA.
- *N170* (sites P7, P8, P07, P08; 140-200ms) amplitudes were **larger** for EA vs. White faces, F(1, 18) = 31.44, p < 0.001, $\eta_p^2 = 0.64$, but also generally decreased as a function of SOA, F(1.45, 26.09) = 13.82, $p < 0.001, \ \eta_p^2 = 0.43.$
- *N250* (250-330ms) amplitudes were also larger for EA vs. White **faces**, F(1, 18) = 75.36, p < 0.001, $\eta_p^2 = 0.81$, and generally decreased along with SOA, F(1.40, 25.13) = 13.71, p < 0.001, $\eta_p^2 = 0.43$. Interestingly, these factors interacted. Specifically, the effect of race increased as SOA decreased, $F(1.95, 35.04) = 3.39, p < 0.05, \eta_p^2 = 0.16$ (see also **Fig. 4**).
- N200 (sites FC1, FC2, and FCz; 300-380ms) amplitudes showed no effect of race (F < 1, p > 0.2), but did show an effect of SOA, F(1.49), 26.77) = 14.86, *p* < 0.001, η_p^2 = 0.45.
- **P300** (POz, and Oz; 300-400ms) amplitudes were **larger for White vs.** EA faces, F(1, 18) = 9.52, p < 0.01, $\eta_p^2 = 0.35$, and increased as SOA decreased, $F(1.52, 27.40) = 8.67, p < 0.01, \eta_p^2 = 0.33.$

Discussion

N170 (structural encoding) and N250 (matching percept to stored representations) both exhibited increased amplitudes for other-race faces, suggesting more sustained but also relatively inefficient perceptual processing, compared to own-race faces. That the N250 ORE increased as a function of central competition suggests this process might be more resilient to central attention scarcity when processing own race faces. Furthermore, subsequent P300 amplitudes were decreased for other-race faces, highlighting an increase in high-level (decision-making, working memory) resources expenditure [6,7,8]. Altogether, these results provide further support to our recent conclusions, namely that decreased perceptual efficiency with other race faces increases the need for higher-level resources when identifying other race faces, leading to the own race recognition advantage [5].

as a function of SOA (from left to right, 300ms, 600ms and 1200ms) and stimulus race.

Figure 3. A. Mean ERP amplitudes as a function of SOA and stimulus race. B. EEG time-course from -100 to +800ms from T2 onset at parietooccipital sites (top), occipital sites (middle), and frontocentral sites (bottom)